These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

604 related articles for article (PubMed ID: 15782150)

  • 1. Sulforhodamine 101 as a specific marker of astroglia in the neocortex in vivo.
    Nimmerjahn A; Kirchhoff F; Kerr JN; Helmchen F
    Nat Methods; 2004 Oct; 1(1):31-7. PubMed ID: 15782150
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Developmental profile and properties of sulforhodamine 101--Labeled glial cells in acute brain slices of rat hippocampus.
    Kafitz KW; Meier SD; Stephan J; Rose CR
    J Neurosci Methods; 2008 Mar; 169(1):84-92. PubMed ID: 18187203
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo staining of neocortical astrocytes via the cerebral microcirculation using sulforhodamine B.
    Vérant P; Ricard C; Serduc R; Vial JC; van der Sanden B
    J Biomed Opt; 2008; 13(6):064028. PubMed ID: 19123674
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo labeling of cortical astrocytes with sulforhodamine 101 (SR101).
    Nimmerjahn A; Helmchen F
    Cold Spring Harb Protoc; 2012 Mar; 2012(3):326-34. PubMed ID: 22383644
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unspecific labelling of oligodendrocytes by sulforhodamine 101 depends on astrocytic uptake via the thyroid hormone transporter OATP1C1 (SLCO1C1).
    Hagos L; Hülsmann S
    Neurosci Lett; 2016 Sep; 631():13-18. PubMed ID: 27519929
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visualizing astrocytes in the deep mouse brain in vivo.
    Liu H; Wang J; Zhuang Z; He J; Wen W; Qiu P; Wang K
    J Biophotonics; 2019 Jul; 12(7):e201800420. PubMed ID: 30938095
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Visualization of synapse-glia dynamics].
    Nishida H; Okabe S
    Brain Nerve; 2007 Jul; 59(7):755-61. PubMed ID: 17663147
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calcium imaging of living astrocytes in the mouse spinal cord following sensory stimulation.
    Cirillo G; De Luca D; Papa M
    Neural Plast; 2012; 2012():425818. PubMed ID: 23091738
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Active sulforhodamine 101 uptake into hippocampal astrocytes.
    Schnell C; Hagos Y; Hülsmann S
    PLoS One; 2012; 7(11):e49398. PubMed ID: 23189143
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ballistic labeling and dynamic imaging of astrocytes in organotypic hippocampal slice cultures.
    Benediktsson AM; Schachtele SJ; Green SH; Dailey ME
    J Neurosci Methods; 2005 Jan; 141(1):41-53. PubMed ID: 15585287
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensory Response of Transplanted Astrocytes in Adult Mammalian Cortex In Vivo.
    Zhang K; Chen C; Yang Z; He W; Liao X; Ma Q; Deng P; Lu J; Li J; Wang M; Li M; Zheng L; Zhou Z; Sun W; Wang L; Jia H; Yu Z; Zhou Z; Chen X
    Cereb Cortex; 2016 Sep; 26(9):3690-3704. PubMed ID: 27405333
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Specific in vivo staining of astrocytes in the whole brain after intravenous injection of sulforhodamine dyes.
    Appaix F; Girod S; Boisseau S; Römer J; Vial JC; Albrieux M; Maurin M; Depaulis A; Guillemain I; van der Sanden B
    PLoS One; 2012; 7(4):e35169. PubMed ID: 22509398
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mature astrocytes transform into transitional radial glia within adult mouse neocortex that supports directed migration of transplanted immature neurons.
    Leavitt BR; Hernit-Grant CS; Macklis JD
    Exp Neurol; 1999 May; 157(1):43-57. PubMed ID: 10222107
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intercellular calcium signaling between astrocytes and oligodendrocytes via gap junctions in culture.
    Parys B; Côté A; Gallo V; De Koninck P; Sík A
    Neuroscience; 2010 Jun; 167(4):1032-43. PubMed ID: 20211698
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activity-dependent ATP-waves in the mouse neocortex are independent from astrocytic calcium waves.
    Haas B; Schipke CG; Peters O; Söhl G; Willecke K; Kettenmann H
    Cereb Cortex; 2006 Feb; 16(2):237-46. PubMed ID: 15930372
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo 2-photon calcium imaging in layer 2/3 of mice.
    Golshani P; Portera-Cailliau C
    J Vis Exp; 2008 Mar; (13):. PubMed ID: 19066575
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Repeated longitudinal in vivo imaging of neuro-glio-vascular unit at the peripheral boundary of ischemia in mouse cerebral cortex.
    Masamoto K; Tomita Y; Toriumi H; Aoki I; Unekawa M; Takuwa H; Itoh Y; Suzuki N; Kanno I
    Neuroscience; 2012 Jun; 212():190-200. PubMed ID: 22516017
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeted bulk-loading of fluorescent indicators for two-photon brain imaging in vivo.
    Garaschuk O; Milos RI; Konnerth A
    Nat Protoc; 2006; 1(1):380-6. PubMed ID: 17406260
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo imaging of oligodendrocytes with sulforhodamine 101.
    Hill RA; Grutzendler J
    Nat Methods; 2014 Nov; 11(11):1081-2. PubMed ID: 25357236
    [No Abstract]   [Full Text] [Related]  

  • 20. In vivo one-photon confocal calcium imaging of neuronal activity from the mouse neocortex.
    Iwasaki S; Ikegaya Y
    J Integr Neurosci; 2018; 17(3-4):671-678. PubMed ID: 30103345
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.