These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 15782160)

  • 1. Mapping DNA-protein interactions in large genomes by sequence tag analysis of genomic enrichment.
    Kim J; Bhinge AA; Morgan XC; Iyer VR
    Nat Methods; 2005 Jan; 2(1):47-53. PubMed ID: 15782160
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-wide mapping of in vivo protein-DNA interactions.
    Johnson DS; Mortazavi A; Myers RM; Wold B
    Science; 2007 Jun; 316(5830):1497-502. PubMed ID: 17540862
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chromatin immunoprecipitation for identifying transcription factor targets in keratinocytes.
    Ortt K; Sinha S
    Methods Mol Biol; 2010; 585():159-70. PubMed ID: 19908003
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generation of p53 target database via integration of microarray and global p53 DNA-binding site analysis.
    Liu S; Mirza A; Wang L
    Methods Mol Biol; 2004; 281():33-54. PubMed ID: 15220520
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genomewide identification of protein binding locations using chromatin immunoprecipitation coupled with microarray.
    Cho BK; Knight EM; Palsson BØ
    Methods Mol Biol; 2008; 439():131-45. PubMed ID: 18370100
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of MEF2-regulated genes during muscle differentiation.
    Paris J; Virtanen C; Lu Z; Takahashi M
    Physiol Genomics; 2004 Dec; 20(1):143-51. PubMed ID: 15507520
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A hidden Markov model for analyzing ChIP-chip experiments on genome tiling arrays and its application to p53 binding sequences.
    Li W; Meyer CA; Liu XS
    Bioinformatics; 2005 Jun; 21 Suppl 1():i274-82. PubMed ID: 15961467
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identifying transcriptional regulatory regions using reporter genes and DNA-protein interactions by chromatin immunoprecipitation.
    Ooi L; Wood IC
    Methods Mol Biol; 2008; 491():3-17. PubMed ID: 18998080
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved genome-wide localization by ChIP-chip using double-round T7 RNA polymerase-based amplification.
    van Bakel H; van Werven FJ; Radonjic M; Brok MO; van Leenen D; Holstege FC; Timmers HT
    Nucleic Acids Res; 2008 Mar; 36(4):e21. PubMed ID: 18180247
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-wide mapping of protein-DNA interaction by chromatin immunoprecipitation and DNA microarray hybridization (ChIP-chip). Part A: ChIP-chip molecular methods.
    Reimer JJ; Turck F
    Methods Mol Biol; 2010; 631():139-60. PubMed ID: 20204874
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental advances in the characterization of metazoan gene regulatory networks.
    Deplancke B
    Brief Funct Genomic Proteomic; 2009 Jan; 8(1):12-27. PubMed ID: 19324929
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Myc-binding-site recognition in the human genome is determined by chromatin context.
    Guccione E; Martinato F; Finocchiaro G; Luzi L; Tizzoni L; Dall' Olio V; Zardo G; Nervi C; Bernard L; Amati B
    Nat Cell Biol; 2006 Jul; 8(7):764-70. PubMed ID: 16767079
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel in vivo targets of DeltaNp63 in keratinocytes identified by a modified chromatin immunoprecipitation approach.
    Birkaya B; Ortt K; Sinha S
    BMC Mol Biol; 2007 May; 8():43. PubMed ID: 17521434
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DamID: mapping of in vivo protein-genome interactions using tethered DNA adenine methyltransferase.
    Greil F; Moorman C; van Steensel B
    Methods Enzymol; 2006; 410():342-59. PubMed ID: 16938559
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Defining the CREB regulon: a genome-wide analysis of transcription factor regulatory regions.
    Impey S; McCorkle SR; Cha-Molstad H; Dwyer JM; Yochum GS; Boss JM; McWeeney S; Dunn JJ; Mandel G; Goodman RH
    Cell; 2004 Dec; 119(7):1041-54. PubMed ID: 15620361
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Statistical methods in integrative analysis for gene regulatory modules.
    Zeng L; Wu J; Xie J
    Stat Appl Genet Mol Biol; 2008; 7(1):Article 28. PubMed ID: 18976224
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A global map of p53 transcription-factor binding sites in the human genome.
    Wei CL; Wu Q; Vega VB; Chiu KP; Ng P; Zhang T; Shahab A; Yong HC; Fu Y; Weng Z; Liu J; Zhao XD; Chew JL; Lee YL; Kuznetsov VA; Sung WK; Miller LD; Lim B; Liu ET; Yu Q; Ng HH; Ruan Y
    Cell; 2006 Jan; 124(1):207-19. PubMed ID: 16413492
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrating genomic data to predict transcription factor binding.
    Holloway DT; Kon M; DeLisi C
    Genome Inform; 2005; 16(1):83-94. PubMed ID: 16362910
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-wide prediction of transcriptional regulatory elements of human promoters using gene expression and promoter analysis data.
    Kim SY; Kim Y
    BMC Bioinformatics; 2006 Jul; 7():330. PubMed ID: 16817975
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The transcriptional regulatory code of eukaryotic cells--insights from genome-wide analysis of chromatin organization and transcription factor binding.
    Barrera LO; Ren B
    Curr Opin Cell Biol; 2006 Jun; 18(3):291-8. PubMed ID: 16647254
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.