BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 15783085)

  • 1. MHC class I down regulation, tumour escape from immune surveillance and design of therapeutic strategies.
    Bubeník J
    Folia Biol (Praha); 2005; 51(1):1-2. PubMed ID: 15783085
    [No Abstract]   [Full Text] [Related]  

  • 2. MHC class I down-regulation: tumour escape from immune surveillance? (review).
    Bubeník J
    Int J Oncol; 2004 Aug; 25(2):487-91. PubMed ID: 15254748
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MHC class I antigens and immune surveillance in transformed cells.
    Aptsiauri N; Cabrera T; Garcia-Lora A; Lopez-Nevot MA; Ruiz-Cabello F; Garrido F
    Int Rev Cytol; 2007; 256():139-89. PubMed ID: 17241907
    [TBL] [Abstract][Full Text] [Related]  

  • 4. T lymphocyte-derived TNF and IFN-γ repress HFE expression in cancer cells.
    Reuben A; Godin-Ethier J; Santos MM; Lapointe R
    Mol Immunol; 2015 Jun; 65(2):259-66. PubMed ID: 25700349
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Evolutionarily Conserved Function of Polycomb Silences the MHC Class I Antigen Presentation Pathway and Enables Immune Evasion in Cancer.
    Burr ML; Sparbier CE; Chan KL; Chan YC; Kersbergen A; Lam EYN; Azidis-Yates E; Vassiliadis D; Bell CC; Gilan O; Jackson S; Tan L; Wong SQ; Hollizeck S; Michalak EM; Siddle HV; McCabe MT; Prinjha RK; Guerra GR; Solomon BJ; Sandhu S; Dawson SJ; Beavis PA; Tothill RW; Cullinane C; Lehner PJ; Sutherland KD; Dawson MA
    Cancer Cell; 2019 Oct; 36(4):385-401.e8. PubMed ID: 31564637
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Frequent Loss of IRF2 in Cancers Leads to Immune Evasion through Decreased MHC Class I Antigen Presentation and Increased PD-L1 Expression.
    Kriegsman BA; Vangala P; Chen BJ; Meraner P; Brass AL; Garber M; Rock KL
    J Immunol; 2019 Oct; 203(7):1999-2010. PubMed ID: 31471524
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The nonpolymorphic MHC Qa-1b mediates CD8+ T cell surveillance of antigen-processing defects.
    Oliveira CC; van Veelen PA; Querido B; de Ru A; Sluijter M; Laban S; Drijfhout JW; van der Burg SH; Offringa R; van Hall T
    J Exp Med; 2010 Jan; 207(1):207-21. PubMed ID: 20038604
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MHC Class I Deficiency in Solid Tumors and Therapeutic Strategies to Overcome It.
    Shklovskaya E; Rizos H
    Int J Mol Sci; 2021 Jun; 22(13):. PubMed ID: 34201655
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Towards a holistic vision of cancer].
    Solary É; Laplane L
    Med Sci (Paris); 2016 Apr; 32(4):315-6. PubMed ID: 27137681
    [No Abstract]   [Full Text] [Related]  

  • 10. MHC class I antigens, immune surveillance, and tumor immune escape.
    Garcia-Lora A; Algarra I; Garrido F
    J Cell Physiol; 2003 Jun; 195(3):346-55. PubMed ID: 12704644
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Replicative senescence of CD8 T cells: potential effects on cancer immune surveillance and immunotherapy.
    Effros RB
    Cancer Immunol Immunother; 2004 Oct; 53(10):925-33. PubMed ID: 15067431
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How tumors escape immune destruction and what we can do about it.
    Gilboa E
    Cancer Immunol Immunother; 1999 Oct; 48(7):382-5. PubMed ID: 10501851
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Xenopus, a unique comparative model to explore the role of certain heat shock proteins and non-classical MHC class Ib gene products in immune surveillance.
    Robert J; Goyos A; Nedelkovska H
    Immunol Res; 2009 Dec; 45(2-3):114-22. PubMed ID: 19189057
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Membrane-bound versus soluble major histocompatibility complex Class I-related chain A and major histocompatibility complex Class I-related chain B differential expression: Mechanisms of tumor eradication versus evasion and current drug development strategies.
    Suresh PK
    J Cancer Res Ther; 2016; 12(4):1224-1233. PubMed ID: 28169232
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective cytotoxic T-lymphocyte targeting of tumor immune escape variants.
    van Hall T; Wolpert EZ; van Veelen P; Laban S; van der Veer M; Roseboom M; Bres S; Grufman P; de Ru A; Meiring H; de Jong A; Franken K; Teixeira A; Valentijn R; Drijfhout JW; Koning F; Camps M; Ossendorp F; Kärre K; Ljunggren HG; Melief CJ; Offringa R
    Nat Med; 2006 Apr; 12(4):417-24. PubMed ID: 16550190
    [TBL] [Abstract][Full Text] [Related]  

  • 16. From tumor cell metabolism to tumor immune escape.
    Villalba M; Rathore MG; Lopez-Royuela N; Krzywinska E; Garaude J; Allende-Vega N
    Int J Biochem Cell Biol; 2013 Jan; 45(1):106-13. PubMed ID: 22568930
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Playing hide and seek: Tumor cells in control of MHC class I antigen presentation.
    Jongsma MLM; Neefjes J; Spaapen RM
    Mol Immunol; 2021 Aug; 136():36-44. PubMed ID: 34082257
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cancer immunoediting from immune surveillance to immune escape.
    Kim R; Emi M; Tanabe K
    Immunology; 2007 May; 121(1):1-14. PubMed ID: 17386080
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Escape from immune- and nonimmune-mediated tumor surveillance.
    Malmberg KJ; Ljunggren HG
    Semin Cancer Biol; 2006 Feb; 16(1):16-31. PubMed ID: 16140546
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Forcing tumor cells to present their own tumor antigens to the immune system: a necessary design for an efficient tumor immunotherapy.
    Humphreys RE; Hillman GG; von Hofe E; Xu M
    Cell Mol Immunol; 2004 Jun; 1(3):180-5. PubMed ID: 16219165
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.