These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 15783318)

  • 41. Numerical methods for the stochastic Landau-Lifshitz Navier-Stokes equations.
    Bell JB; Garcia AL; Williams SA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jul; 76(1 Pt 2):016708. PubMed ID: 17677595
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Assessing a hydrodynamic description for instabilities in highly dissipative, freely cooling granular gases.
    Mitrano PP; Garzó V; Hilger AM; Ewasko CJ; Hrenya CM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 1):041303. PubMed ID: 22680465
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Instabilities in granular binary mixtures at moderate densities.
    Mitrano PP; Garzó V; Hrenya CM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):020201. PubMed ID: 25353402
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Temperature profiles and heat fluxes observed in molecular dynamics simulations of force-driven liquid flows.
    Ghorbanian J; Beskok A
    Phys Chem Chem Phys; 2017 Apr; 19(16):10317-10325. PubMed ID: 28398441
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Molecular dynamics simulations of peptides and proteins with a continuum electrostatic model based on screened Coulomb potentials.
    Hassan SA; Mehler EL; Zhang D; Weinstein H
    Proteins; 2003 Apr; 51(1):109-25. PubMed ID: 12596268
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Smoothed particle hydrodynamics model for Landau-Lifshitz-Navier-Stokes and advection-diffusion equations.
    Kordilla J; Pan W; Tartakovsky A
    J Chem Phys; 2014 Dec; 141(22):224112. PubMed ID: 25494737
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Comparison of molecular dynamics with hybrid continuum-molecular dynamics for a single tethered polymer in a solvent.
    Barsky S; Delgado-Buscalioni R; Coveney PV
    J Chem Phys; 2004 Aug; 121(5):2403-11. PubMed ID: 15260795
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Thermal fluctuation effects on finite-size scaling of synchronization.
    Son SW; Hong H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jun; 81(6 Pt 1):061125. PubMed ID: 20866396
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Argon nucleation: bringing together theory, simulations, and experiment.
    Kalikmanov VI; Wölk J; Kraska T
    J Chem Phys; 2008 Mar; 128(12):124506. PubMed ID: 18376942
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Experimental study of solid-liquid-type transitions in vibrated granular layers and the relation with surface waves.
    Mujica N; Melo F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jan; 63(1 Pt 1):011303. PubMed ID: 11304252
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Dynamics of fluctuations in a fluid below the onset of Rayleigh-Bénard convection.
    Oh J; Ortiz de Zárate JM; Sengers JV; Ahlers G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Feb; 69(2 Pt 1):021106. PubMed ID: 14995426
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Three-dimensional simulations of a vertically vibrated granular bed including interstitial air.
    Idler V; Sánchez I; Paredes R; Gutiérrez G; Reyes LI; Botet R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 May; 79(5 Pt 1):051301. PubMed ID: 19518443
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Control of density fluctuations in atomistic-continuum simulations of dense liquids.
    Kotsalis EM; Walther JH; Koumoutsakos P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jul; 76(1 Pt 2):016709. PubMed ID: 17677596
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Stretched exponential dynamics in lipid bilayer simulations.
    Brandt EG; Edholm O
    J Chem Phys; 2010 Sep; 133(11):115101. PubMed ID: 20866157
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Numerical simulations of granular dam break: Comparison between discrete element, Navier-Stokes, and thin-layer models.
    Martin HA; Peruzzetto M; Viroulet S; Mangeney A; Lagrée PY; Popinet S; Maury B; Lefebvre-Lepot A; Maday Y; Bouchut F
    Phys Rev E; 2023 Nov; 108(5-1):054902. PubMed ID: 38115420
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Mixing of a granular layer falling through a fluid.
    Niebling MJ; Flekkøy EG; Måløy KJ; Toussaint R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jul; 82(1 Pt 1):011301. PubMed ID: 20866605
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Response maxima in modulated turbulence. II. Numerical simulations.
    von der Heydt A; Grossmann S; Lohse D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Dec; 68(6 Pt 2):066302. PubMed ID: 14754310
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Scaling of atomistic fluid dynamics simulations.
    Kadau K; Barber JL; Germann TC; Alder BJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Oct; 78(4 Pt 2):045301. PubMed ID: 18999481
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Coarsening dynamics of striped patterns in thin granular layers under vertical vibration.
    Kim K; Pak HK
    Phys Rev Lett; 2002 May; 88(20):204303. PubMed ID: 12005568
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Continuum and molecular-dynamics simulation of nanodroplet collisions.
    Bardia R; Liang Z; Keblinski P; Trujillo MF
    Phys Rev E; 2016 May; 93(5):053104. PubMed ID: 27300975
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.