These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Fixed-density boundary conditions in overdamped Langevin simulations of diffusion in channels. Ramírez-Piscina L Phys Rev E; 2018 Jul; 98(1-1):013302. PubMed ID: 30110749 [TBL] [Abstract][Full Text] [Related]
5. A stochastic simulation of direct ion passage through a sodium channel. Veresov VG Membr Cell Biol; 1997; 11(1):101-13. PubMed ID: 9257285 [TBL] [Abstract][Full Text] [Related]
6. Random transitions described by the stochastic Smoluchowski-Poisson system and by the stochastic Keller-Segel model. Chavanis PH; Delfini L Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):032139. PubMed ID: 24730821 [TBL] [Abstract][Full Text] [Related]
7. Computer simulation of single-file transport. Aityan SK; Portnov VI Gen Physiol Biophys; 1986 Aug; 5(4):351-64. PubMed ID: 3770456 [TBL] [Abstract][Full Text] [Related]
8. Mixed analytical-stochastic simulation method for the recovery of a Brownian gradient source from probability fluxes to small windows. Dobramysl U; Holcman D J Comput Phys; 2018 Feb; 355():22-36. PubMed ID: 29456262 [TBL] [Abstract][Full Text] [Related]
9. Robust unidirectional rotation in three-tooth Brownian rotary ratchet systems. Tutu H; Nagata S Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):022144. PubMed ID: 23496496 [TBL] [Abstract][Full Text] [Related]
10. Substrate concentration dependence of the diffusion-controlled steady-state rate constant. Dzubiella J; McCammon JA J Chem Phys; 2005 May; 122(18):184902. PubMed ID: 15918760 [TBL] [Abstract][Full Text] [Related]
11. Entropic particle transport in periodic channels. Burada PS; Schmid G; Talkner P; Hänggi P; Reguera D; Rubí JM Biosystems; 2008; 93(1-2):16-22. PubMed ID: 18462863 [TBL] [Abstract][Full Text] [Related]
12. Single-file diffusion of uncharged particles. Aityan SK Gen Physiol Biophys; 1985 Feb; 4(1):3-14. PubMed ID: 2411622 [TBL] [Abstract][Full Text] [Related]
13. Superdiffusive trajectories in Brownian motion. Duplat J; Kheifets S; Li T; Raizen MG; Villermaux E Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):020105. PubMed ID: 23496441 [TBL] [Abstract][Full Text] [Related]
14. Do we have to explicitly model the ions in brownian dynamics simulations of proteins? Zimmer MJ; Geyer T J Chem Phys; 2012 Mar; 136(12):125102. PubMed ID: 22462897 [TBL] [Abstract][Full Text] [Related]
15. Colloidal dynamics: influence of diffusion, inertia and colloidal forces on cluster formation. Kovalchuk N; Starov V; Langston P; Hilal N; Zhdanov V J Colloid Interface Sci; 2008 Sep; 325(2):377-85. PubMed ID: 18619605 [TBL] [Abstract][Full Text] [Related]
16. Generalized quantum Fokker-Planck, diffusion, and Smoluchowski equations with true probability distribution functions. Banik SK; Bag BC; Ray DS Phys Rev E Stat Nonlin Soft Matter Phys; 2002 May; 65(5 Pt 1):051106. PubMed ID: 12059528 [TBL] [Abstract][Full Text] [Related]
17. Analysis of the components of ionic flux across a membrane. Shapiro MP; Candia OA Biophys J; 1971 Jan; 11(1):28-46. PubMed ID: 5538999 [TBL] [Abstract][Full Text] [Related]
18. Brownian motion of finite-inertia particles in a simple shear flow. Drossinos Y; Reeks MW Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 1):031113. PubMed ID: 15903412 [TBL] [Abstract][Full Text] [Related]
19. Smoluchowski diffusion equation for active Brownian swimmers. Sevilla FJ; Sandoval M Phys Rev E Stat Nonlin Soft Matter Phys; 2015 May; 91(5):052150. PubMed ID: 26066162 [TBL] [Abstract][Full Text] [Related]
20. Hybrid simulations of lateral diffusion in fluctuating membranes. Reister-Gottfried E; Leitenberger SM; Seifert U Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jan; 75(1 Pt 1):011908. PubMed ID: 17358185 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]