These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Trapping and instability of directional gravity waves in localized water currents. Eliasson B; Haas F Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):063014. PubMed ID: 25019886 [TBL] [Abstract][Full Text] [Related]
5. Modulational instability in the full-dispersion Camassa-Holm equation. Hur VM; Pandey AK Proc Math Phys Eng Sci; 2017 Jul; 473(2203):20170153. PubMed ID: 28804258 [TBL] [Abstract][Full Text] [Related]
6. On the stability of lumps and wave collapse in water waves. Akylas TR; Cho Y Philos Trans A Math Phys Eng Sci; 2008 Aug; 366(1876):2761-74. PubMed ID: 18487123 [TBL] [Abstract][Full Text] [Related]
7. Traveling waves and localized modes in one-dimensional homogeneous granular chains with no precompression. Starosvetsky Y; Vakakis AF Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 2):026603. PubMed ID: 20866933 [TBL] [Abstract][Full Text] [Related]
8. Strongly nonlinear long gravity waves in uniform shear flows. Choi W Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Aug; 68(2 Pt 2):026305. PubMed ID: 14525103 [TBL] [Abstract][Full Text] [Related]
9. Stability of gravity-capillary solitary waves on shallow water based on the fifth-order Kadomtsev-Petviashvili equation. Cho Y Phys Rev E; 2018 Jul; 98(1-1):012213. PubMed ID: 30110743 [TBL] [Abstract][Full Text] [Related]
10. Dark- and bright-rogue-wave solutions for media with long-wave-short-wave resonance. Chen S; Grelu P; Soto-Crespo JM Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):011201. PubMed ID: 24580164 [TBL] [Abstract][Full Text] [Related]
11. Nonlinear stage of the Benjamin-Feir instability: three-dimensional coherent structures and rogue waves. Ruban VP Phys Rev Lett; 2007 Jul; 99(4):044502. PubMed ID: 17678370 [TBL] [Abstract][Full Text] [Related]
12. Nonlinear dynamics of traveling waves in rotating Rayleigh-Bénard convection: effects of the boundary conditions and of the topology. Plaut E Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Apr; 67(4 Pt 2):046303. PubMed ID: 12786483 [TBL] [Abstract][Full Text] [Related]
13. Observation of strongly non-Gaussian statistics for random sea surface gravity waves in wave flume experiments. Onorato M; Osborne AR; Serio M; Cavaleri L; Brandini C; Stansberg CT Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 2):067302. PubMed ID: 15697561 [TBL] [Abstract][Full Text] [Related]
14. Amplitude equation and pattern selection in Faraday waves. Chen P; Viñals J Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Jul; 60(1):559-70. PubMed ID: 11969795 [TBL] [Abstract][Full Text] [Related]
15. The dynamics of surface wave propagation based on the Benjamin Bona Mahony equation. Fadhiliani D; Halfiani V; Ikhwan M; Qausar H; Munzir S; Rizal S; Syafwan M; Ramli M Heliyon; 2020 May; 6(5):e04004. PubMed ID: 32462096 [TBL] [Abstract][Full Text] [Related]
16. Asymptotic soliton train solutions of the defocusing nonlinear Schrödinger equation. Kamchatnov AM; Kraenkel RA; Umarov BA Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Sep; 66(3 Pt 2B):036609. PubMed ID: 12366282 [TBL] [Abstract][Full Text] [Related]
17. Taming turbulence in the complex Ginzburg-Landau equation. Zhan M; Zou W; Liu X Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Mar; 81(3 Pt 2):036211. PubMed ID: 20365836 [TBL] [Abstract][Full Text] [Related]
18. Modulational instability, higher-order localized wave structures, and nonlinear wave interactions for a nonautonomous Lenells-Fokas equation in inhomogeneous fibers. Wang L; Zhu YJ; Qi FH; Li M; Guo R Chaos; 2015 Jun; 25(6):063111. PubMed ID: 26117105 [TBL] [Abstract][Full Text] [Related]
19. Dynamics of modulated waves in a lossy modified Noguchi electrical transmission line. Kengne E; Lakhssassi A; Liu WM Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):062915. PubMed ID: 26172780 [TBL] [Abstract][Full Text] [Related]
20. Nonlinear dynamics of trapped waves on jet currents and rogue waves. Shrira VI; Slunyaev AV Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr; 89(4):041002. PubMed ID: 24827178 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]