These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

461 related articles for article (PubMed ID: 15783439)

  • 1. Diffractionless flow of light in two- and three-dimensional photonic band gap heterostructures: Theory, design rules, and simulations.
    Chutinan A; John S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Feb; 71(2 Pt 2):026605. PubMed ID: 15783439
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3 + 1 dimensional integrated optics with localized light in a photonic band gap.
    Chutinan A; John S
    Opt Express; 2006 Feb; 14(3):1266-79. PubMed ID: 19503450
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diffractionless flow of light in all-optical microchips.
    Chutinan A; John S; Toader O
    Phys Rev Lett; 2003 Mar; 90(12):123901. PubMed ID: 12688870
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Square spiral photonic crystals: robust architecture for microfabrication of materials with large three-dimensional photonic band gaps.
    Toader O; John S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jul; 66(1 Pt 2):016610. PubMed ID: 12241503
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Broadband single-mode waveguiding in two- and three-dimensional hybrid photonic crystals based on silicon inverse opals.
    Qiu G; Vynck K; Cassagne D; Centeno E
    Opt Express; 2007 Mar; 15(6):3502-6. PubMed ID: 19532592
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photonic band gaps based on tetragonal lattices of slanted pores.
    Toader O; Berciu M; John S
    Phys Rev Lett; 2003 Jun; 90(23):233901. PubMed ID: 12857259
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photonic amorphous diamond structure with a 3D photonic band gap.
    Edagawa K; Kanoko S; Notomi M
    Phys Rev Lett; 2008 Jan; 100(1):013901. PubMed ID: 18232763
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inverse-problem approach to designing photonic crystals for cavity QED experiments.
    Geremia JM; Williams J; Mabuchi H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Dec; 66(6 Pt 2):066606. PubMed ID: 12513428
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photonic band gap enhancement in frequency-dependent dielectrics.
    Toader O; John S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Oct; 70(4 Pt 2):046605. PubMed ID: 15600545
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-Dimensional SiO
    Ke Y; Balin I; Wang N; Lu Q; Tok AI; White TJ; Magdassi S; Abdulhalim I; Long Y
    ACS Appl Mater Interfaces; 2016 Dec; 8(48):33112-33120. PubMed ID: 27934184
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proposed square spiral microfabrication architecture for large three-dimensional photonic band gap crystals.
    Toader O; John S
    Science; 2001 May; 292(5519):1133-5. PubMed ID: 11349142
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermally Driven Photonic Actuator Based on Silica Opal Photonic Crystal with Liquid Crystal Elastomer.
    Xing H; Li J; Shi Y; Guo J; Wei J
    ACS Appl Mater Interfaces; 2016 Apr; 8(14):9440-5. PubMed ID: 26996608
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres.
    Blanco A; Chomski E; Grabtchak S; Ibisate M; John S; Leonard SW; Lopez C; Meseguer F; Miguez H; Mondia JP; Ozin GA; Toader O; van Driel HM
    Nature; 2000 May; 405(6785):437-40. PubMed ID: 10839534
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photonic band-gap formation by optical-phase-mask lithography.
    Chan TY; Toader O; John S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Apr; 73(4 Pt 2):046610. PubMed ID: 16711945
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characteristic investigation of 2D photonic crystals with full material anisotropy under out-of-plane propagation and liquid-crystal-filled photonic-band-gap-fiber applications using finite element methods.
    Hsu SM; Chang HC
    Opt Express; 2008 Dec; 16(26):21355-68. PubMed ID: 19104565
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of the optical band structure of liquid crystal infiltrated inverse opal by a photoinduced nematic-isotropic phase transition.
    Kubo S; Gu ZZ; Takahashi K; Ohko Y; Sato O; Fujishima A
    J Am Chem Soc; 2002 Sep; 124(37):10950-1. PubMed ID: 12224921
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Research on enhancement of the extraction efficiency of C-band LED with 2D photonic crystals].
    Wei KJ; Li HQ; Chen HD; Li EB; Liu ZH
    Guang Pu Xue Yu Guang Pu Fen Xi; 2012 Sep; 32(9):2341-6. PubMed ID: 23240392
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photonic Crystal Structures for Photovoltaic Applications.
    Starczewska A; Kępińska M
    Materials (Basel); 2024 Mar; 17(5):. PubMed ID: 38473667
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polarization-independent waveguiding with annular photonic crystals.
    Cicek A; Ulug B
    Opt Express; 2009 Sep; 17(20):18381-6. PubMed ID: 19907629
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-quality photonic crystals with a nearly complete band gap obtained by direct inversion of woodpile templates with titanium dioxide.
    Marichy C; Muller N; Froufe-Pérez LS; Scheffold F
    Sci Rep; 2016 Feb; 6():21818. PubMed ID: 26911540
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.