These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 15783456)

  • 1. Three-state Potts model in combination with the rock-scissors-paper game.
    Szolnoki A; Szabó G; Ravasz M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Feb; 71(2 Pt 2):027102. PubMed ID: 15783456
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phase transition in the three-state Potts antiferromagnet on the diced lattice.
    Kotecký R; Salas J; Sokal AD
    Phys Rev Lett; 2008 Jul; 101(3):030601. PubMed ID: 18764243
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diverging fluctuations in a spatial five-species cyclic dominance game.
    Vukov J; Szolnoki A; Szabó G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):022123. PubMed ID: 24032791
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-organizing patterns in an evolutionary rock-paper-scissors game for stochastic synchronized strategy updates.
    Varga L; Vukov J; Szabó G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042920. PubMed ID: 25375580
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phase transition and surface sublimation of a mobile Potts model.
    Bailly-Reyre A; Diep HT; Kaufman M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct; 92(4):042160. PubMed ID: 26565221
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extended defects in the Potts-percolation model of a solid: renormalization group and Monte Carlo analysis.
    Diep HT; Kaufman M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 1):031116. PubMed ID: 19905071
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phase transitions for rock-scissors-paper game on different networks.
    Szolnoki A; Szabó G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Sep; 70(3 Pt 2):037102. PubMed ID: 15524674
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving the efficiency of Monte Carlo simulations of systems that undergo temperature-driven phase transitions.
    Velazquez L; Castro-Palacio JC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):013311. PubMed ID: 23944587
    [TBL] [Abstract][Full Text] [Related]  

  • 9. From pairwise to group interactions in games of cyclic dominance.
    Szolnoki A; Vukov J; Perc M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062125. PubMed ID: 25019743
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatial rock-paper-scissors models with inhomogeneous reaction rates.
    He Q; Mobilia M; Täuber UC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Nov; 82(5 Pt 1):051909. PubMed ID: 21230502
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface phase transitions in one-dimensional channels arranged in a triangular cross-sectional structure: theory and Monte Carlo simulations.
    Pasinetti PM; Romá F; Riccardo JL; Ramirez-Pastor AJ
    J Chem Phys; 2006 Dec; 125(21):214705. PubMed ID: 17166038
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mobility and asymmetry effects in one-dimensional rock-paper-scissors games.
    Venkat S; Pleimling M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Feb; 81(2 Pt 1):021917. PubMed ID: 20365605
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metapopulation model for rock-paper-scissors game: Mutation affects paradoxical impacts.
    Nagatani T; Ichinose G; Tainaka KI
    J Theor Biol; 2018 Aug; 450():22-29. PubMed ID: 29627264
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of competition on pattern formation in the rock-paper-scissors game.
    Jiang LL; Zhou T; Perc M; Wang BH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Aug; 84(2 Pt 1):021912. PubMed ID: 21929025
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three- and four-state rock-paper-scissors games with diffusion.
    Peltomäki M; Alava M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Sep; 78(3 Pt 1):031906. PubMed ID: 18851064
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phase diagrams for the spatial public goods game with pool punishment.
    Szolnoki A; Szabó G; Perc M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Mar; 83(3 Pt 2):036101. PubMed ID: 21517552
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of dipolar interaction in molecular crystals.
    Hoang DT; Diep HT
    J Phys Condens Matter; 2012 Oct; 24(41):415402. PubMed ID: 22990281
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-state cyclic voter model extended with Potts energy.
    Szabó G; Szolnoki A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Mar; 65(3 Pt 2A):036115. PubMed ID: 11909173
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Zealots tame oscillations in the spatial rock-paper-scissors game.
    Szolnoki A; Perc M
    Phys Rev E; 2016 Jun; 93(6):062307. PubMed ID: 27415280
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phase transition in a spatial Lotka-Volterra model.
    Szabó G; Czárán T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jun; 63(6 Pt 1):061904. PubMed ID: 11415142
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.