These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 15783561)

  • 1. Quantum freeze of fidelity decay for chaotic dynamics.
    Prosen T; Znidaric M
    Phys Rev Lett; 2005 Feb; 94(4):044101. PubMed ID: 15783561
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Origin of the exponential decay of the Loschmidt echo in integrable systems.
    Dubertrand R; Goussev A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022915. PubMed ID: 25353553
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantum fidelity decay in quasi-integrable systems.
    Weinstein YS; Hellberg CS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jan; 71(1 Pt 2):016209. PubMed ID: 15697700
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantum corrections to fidelity decay in chaotic systems.
    Gutkin B; Waltner D; Gutiérrez M; Kuipers J; Richter K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Mar; 81(3 Pt 2):036222. PubMed ID: 20365847
    [TBL] [Abstract][Full Text] [Related]  

  • 5. General relation between quantum ergodicity and fidelity of quantum dynamics.
    Prosen T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Mar; 65(3 Pt 2A):036208. PubMed ID: 11909213
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crossover of quantum Loschmidt echo from golden-rule decay to perturbation-independent decay.
    Wang WG; Li B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Nov; 66(5 Pt 2):056208. PubMed ID: 12513587
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scattering approach to fidelity decay in closed systems and parametric level correlations.
    Gorin T; López Vázquez PC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):012906. PubMed ID: 23944537
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Semiclassical theory for decay and fragmentation processes in chaotic quantum systems.
    Gutiérrez M; Waltner D; Kuipers J; Richter K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr; 79(4 Pt 2):046212. PubMed ID: 19518317
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Displacement echoes: classical decay and quantum freeze.
    Petitjean C; Bevilaqua DV; Heller EJ; Jacquod P
    Phys Rev Lett; 2007 Apr; 98(16):164101. PubMed ID: 17501419
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dephasing representation of quantum fidelity for general pure and mixed states.
    Vanícek J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Apr; 73(4 Pt 2):046204. PubMed ID: 16711914
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fidelity decay as an efficient indicator of quantum chaos.
    Emerson J; Weinstein YS; Lloyd S; Cory DG
    Phys Rev Lett; 2002 Dec; 89(28 Pt 1):284102. PubMed ID: 12513151
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stability of classical chaotic motion under a system's perturbations.
    Benenti G; Casati G; Veble G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 May; 67(5 Pt 2):055202. PubMed ID: 12786212
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Uniform semiclassical approach to fidelity decay: from weak to strong perturbation.
    Wang WG; Li B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jun; 71(6 Pt 2):066203. PubMed ID: 16089845
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fidelity freeze for a random matrix model with off-diagonal perturbation.
    Stöckmann HJ; Kohler H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jun; 73(6 Pt 2):066212. PubMed ID: 16906951
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Decoherence, entanglement decay, and equilibration produced by chaotic environments.
    Lemos GB; Toscano F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 2):016220. PubMed ID: 21867286
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Semiclassical mechanism for the quantum decay in open chaotic systems.
    Waltner D; Gutiérrez M; Goussev A; Richter K
    Phys Rev Lett; 2008 Oct; 101(17):174101. PubMed ID: 18999749
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum dephasing and decay of classical correlation functions in chaotic systems.
    Sokolov VV; Benenti G; Casati G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Feb; 75(2 Pt 2):026213. PubMed ID: 17358411
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conductance stability in chaotic and integrable quantum dots with random impurities.
    Wang G; Ying L; Lai YC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022901. PubMed ID: 26382470
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hypersensitivity to perturbations of quantum-chaotic wave-packet dynamics.
    Silvestrov PG; Tworzydło J; Beenakker CW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 2):025204. PubMed ID: 12636735
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generalized dephasing relation for fidelity and application as an efficient propagator.
    Kocia L; Heller EJ
    J Chem Phys; 2013 Sep; 139(12):124110. PubMed ID: 24089753
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.