These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 15783568)
21. Rotating fullerene chains in carbon nanopeapods. Warner JH; Ito Y; Zaka M; Ge L; Akachi T; Okimoto H; Porfyrakis K; Watt AA; Shinohara H; Briggs GA Nano Lett; 2008 Aug; 8(8):2328-35. PubMed ID: 18593202 [TBL] [Abstract][Full Text] [Related]
22. Nanometer-size cluster formation in alkali-metal-doped fullerene layers. Touzik A; Hermann H; Wetzig K J Chem Phys; 2004 Apr; 120(15):7131-5. PubMed ID: 15267617 [TBL] [Abstract][Full Text] [Related]
23. Engineering the physical parameters for continuous synthesis of fullerene peapods. Tiwari N; Pandey N; Roy D; Mukhopadhyay K; Eswara Prasad N Nanotechnology; 2016 May; 27(20):205604. PubMed ID: 27070531 [TBL] [Abstract][Full Text] [Related]
24. Helical superstructures of fullerene peapods and empty single-walled carbon nanotubes formed in water. Nakashima N; Tanaka Y; Tomonari Y; Murakami H; Kataura H; Sakaue T; Yoshikawa K J Phys Chem B; 2005 Jul; 109(27):13076-82. PubMed ID: 16852626 [TBL] [Abstract][Full Text] [Related]
25. Stability and spectroscopy of single nitrogen dopants in graphene at elevated temperatures. Warner JH; Lin YC; He K; Koshino M; Suenaga K ACS Nano; 2014 Nov; 8(11):11806-15. PubMed ID: 25389658 [TBL] [Abstract][Full Text] [Related]
26. Thermal/electron irradiation assisted coalescence of Sc3N@C80 fullerene in carbon nanotube and evidence of charge transfer between pristine/coalesced fullerenes and nanotubes. Fallah A; Yonetani Y; Senga R; Hirahara K; Kitaura R; Shinohara H; Nakayama Y Nanoscale; 2013 Dec; 5(23):11755-60. PubMed ID: 24121541 [TBL] [Abstract][Full Text] [Related]
27. Impact of potassium doping on the electronic structure of tetracene and pentacene: An electron energy-loss study. Roth F; Knupfer M J Chem Phys; 2015 Oct; 143(15):154708. PubMed ID: 26493923 [TBL] [Abstract][Full Text] [Related]
34. Visualizing and identifying single atoms using electron energy-loss spectroscopy with low accelerating voltage. Suenaga K; Sato Y; Liu Z; Kataura H; Okazaki T; Kimoto K; Sawada H; Sasaki T; Omoto K; Tomita T; Kaneyama T; Kondo Y Nat Chem; 2009 Aug; 1(5):415-8. PubMed ID: 21378897 [TBL] [Abstract][Full Text] [Related]
35. EELS study of Fe- or Co-doped titania nanosheets. Ohwada M; Kimoto K; Ebina Y; Sasaki T Microscopy (Oxf); 2015 Apr; 64(2):77-85. PubMed ID: 25391607 [TBL] [Abstract][Full Text] [Related]
36. Energetics and electronic structures of encapsulated C60 in a carbon nanotube. Okada S; Saito S; Oshiyama A Phys Rev Lett; 2001 Apr; 86(17):3835-8. PubMed ID: 11329336 [TBL] [Abstract][Full Text] [Related]
37. Electronic structure analyses of BN network materials using high energy-resolution spectroscopy methods based on transmission electron microscopy. Terauchi M Microsc Res Tech; 2006 Jul; 69(7):531-7. PubMed ID: 16718665 [TBL] [Abstract][Full Text] [Related]
38. Growth of filamentous carbon from the surface of Ni/SiO2 doped with alkali metal bromides. Park C; Keane MA J Colloid Interface Sci; 2002 Jun; 250(1):37-48. PubMed ID: 16290632 [TBL] [Abstract][Full Text] [Related]
39. An infrared and Raman spectroscopic study of polyanilines co-doped with metal ions and H+. Tao S; Hong B; Kerong Z Spectrochim Acta A Mol Biomol Spectrosc; 2007 Apr; 66(4-5):1364-8. PubMed ID: 16987697 [TBL] [Abstract][Full Text] [Related]
40. Electron energy-loss near-edge structures of 3d transition metal oxides recorded at high-energy resolution. Mitterbauer C; Kothleitner G; Grogger W; Zandbergen H; Freitag B; Tiemeijer P; Hofer F Ultramicroscopy; 2003 Sep; 96(3-4):469-80. PubMed ID: 12871809 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]