These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 15783624)

  • 1. Optical clocks based on ultranarrow three-photon resonances in alkaline Earth atoms.
    Hong T; Cramer C; Nagourney W; Fortson EN
    Phys Rev Lett; 2005 Feb; 94(5):050801. PubMed ID: 15783624
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct excitation of the forbidden clock transition in neutral 174Yb atoms confined to an optical lattice.
    Barber ZW; Hoyt CW; Oates CW; Hollberg L; Taichenachev AV; Yudin VI
    Phys Rev Lett; 2006 Mar; 96(8):083002. PubMed ID: 16606176
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Observation and absolute frequency measurements of the 1S0-3P0 optical clock transition in neutral ytterbium.
    Hoyt CW; Barber ZW; Oates CW; Fortier TM; Diddams SA; Hollberg L
    Phys Rev Lett; 2005 Aug; 95(8):083003. PubMed ID: 16196856
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnetic field-induced spectroscopy of forbidden optical transitions with application to lattice-based optical atomic clocks.
    Taichenachev AV; Yudin VI; Oates CW; Hoyt CW; Barber ZW; Hollberg L
    Phys Rev Lett; 2006 Mar; 96(8):083001. PubMed ID: 16606175
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Doppler-free spectroscopy of the 1S0-3P0 optical clock transition in laser-cooled fermionic isotopes of neutral mercury.
    Petersen M; Chicireanu R; Dawkins ST; Magalhães DV; Mandache C; Le Coq Y; Clairon A; Bize S
    Phys Rev Lett; 2008 Oct; 101(18):183004. PubMed ID: 18999828
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Laser locking to the 199Hg 1S0-3P0 clock transition with 5.4 × 10(-15)/✓τ fractional frequency instability.
    McFerran JJ; Magalhães DV; Mandache C; Millo J; Zhang W; Le Coq Y; Santarelli G; Bize S
    Opt Lett; 2012 Sep; 37(17):3477-9. PubMed ID: 22940921
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrastable optical clock with neutral atoms in an engineered light shift trap.
    Katori H; Takamoto M; Pal'chikov VG; Ovsiannikov VD
    Phys Rev Lett; 2003 Oct; 91(17):173005. PubMed ID: 14611343
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-accuracy optical clock via three-level coherence in neutral bosonic 88Sr.
    Santra R; Arimondo E; Ido T; Greene CH; Ye J
    Phys Rev Lett; 2005 May; 94(17):173002. PubMed ID: 15904285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spectroscopy of the 1S0-3P0 clock transition of 87Sr in an optical lattice.
    Takamoto M; Katori H
    Phys Rev Lett; 2003 Nov; 91(22):223001. PubMed ID: 14683233
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prospects for a millihertz-linewidth laser.
    Meiser D; Ye J; Carlson DR; Holland MJ
    Phys Rev Lett; 2009 Apr; 102(16):163601. PubMed ID: 19518709
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Observation of the 1S0-3P0 transition in atomic ytterbium for optical clocks and qubit arrays.
    Hong T; Cramer C; Cook E; Nagourney W; Fortson EN
    Opt Lett; 2005 Oct; 30(19):2644-6. PubMed ID: 16208927
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Frequency shifts in an optical lattice clock due to magnetic-dipole and electric-quadrupole transitions.
    Taichenachev AV; Yudin VI; Ovsiannikov VD; Pal'chikov VG; Oates CW
    Phys Rev Lett; 2008 Nov; 101(19):193601. PubMed ID: 19113267
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accurate optical lattice clock with 87Sr atoms.
    Le Targat R; Baillard X; Fouché M; Brusch A; Tcherbakoff O; Rovera GD; Lemonde P
    Phys Rev Lett; 2006 Sep; 97(13):130801. PubMed ID: 17026019
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical lattice induced light shifts in an yb atomic clock.
    Barber ZW; Stalnaker JE; Lemke ND; Poli N; Oates CW; Fortier TM; Diddams SA; Hollberg L; Hoyt CW; Taichenachev AV; Yudin VI
    Phys Rev Lett; 2008 Mar; 100(10):103002. PubMed ID: 18352181
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Observation of motion-dependent nonlinear dispersion with narrow-linewidth atoms in an optical cavity.
    Westergaard PG; Christensen BT; Tieri D; Matin R; Cooper J; Holland M; Ye J; Thomsen JW
    Phys Rev Lett; 2015 Mar; 114(9):093002. PubMed ID: 25793810
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 87Sr lattice clock with inaccuracy below 10 -15.
    Boyd MM; Ludlow AD; Blatt S; Foreman SM; Ido T; Zelevinsky T; Ye J
    Phys Rev Lett; 2007 Feb; 98(8):083002. PubMed ID: 17359093
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hyperpolarizability and Operational Magic Wavelength in an Optical Lattice Clock.
    Brown RC; Phillips NB; Beloy K; McGrew WF; Schioppo M; Fasano RJ; Milani G; Zhang X; Hinkley N; Leopardi H; Yoon TH; Nicolodi D; Fortier TM; Ludlow AD
    Phys Rev Lett; 2017 Dec; 119(25):253001. PubMed ID: 29303326
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clock-Line-Mediated Sisyphus Cooling.
    Chen CC; Siegel JL; Hunt BD; Grogan T; Hassan YS; Beloy K; Gibble K; Brown RC; Ludlow AD
    Phys Rev Lett; 2024 Aug; 133(5):053401. PubMed ID: 39159118
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical clock with millihertz linewidth based on a phase-matching effect.
    Yu D; Chen J
    Phys Rev Lett; 2007 Feb; 98(5):050801. PubMed ID: 17358840
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical atomic coherence at the 1-second time scale.
    Boyd MM; Zelevinsky T; Ludlow AD; Foreman SM; Blatt S; Ido T; Ye J
    Science; 2006 Dec; 314(5804):1430-3. PubMed ID: 17138896
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.