These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 15783643)

  • 1. Signatures of homoclinic motion in quantum chaos.
    Wisniacki DA; Vergini E; Benito RM; Borondo F
    Phys Rev Lett; 2005 Feb; 94(5):054101. PubMed ID: 15783643
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of chaos on precursors of quantum criticality.
    García-Mata I; Vergini E; Wisniacki DA
    Phys Rev E; 2021 Dec; 104(6):L062202. PubMed ID: 35030879
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exact relations between homoclinic and periodic orbit actions in chaotic systems.
    Li J; Tomsovic S
    Phys Rev E; 2018 Feb; 97(2-1):022216. PubMed ID: 29548081
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Homoclinic orbits and chaos in a pair of parametrically driven coupled nonlinear resonators.
    Kenig E; Tsarin YA; Lifshitz R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 2):016212. PubMed ID: 21867278
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On infinite homoclinic orbits induced by unstable periodic orbits in the Lorenz system.
    Guo S; Luo ACJ
    Chaos; 2021 Apr; 31(4):043106. PubMed ID: 34251254
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scarring by homoclinic and heteroclinic orbits.
    Wisniacki DA; Vergini E; Benito RM; Borondo F
    Phys Rev Lett; 2006 Sep; 97(9):094101. PubMed ID: 17026365
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Route to chaos in optomechanics.
    Bakemeier L; Alvermann A; Fehske H
    Phys Rev Lett; 2015 Jan; 114(1):013601. PubMed ID: 25615468
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exact decomposition of homoclinic orbit actions in chaotic systems: Information reduction.
    Li J; Tomsovic S
    Phys Rev E; 2019 Mar; 99(3-1):032212. PubMed ID: 30999433
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Periodic orbits in Hamiltonian chaos of the annular billiard.
    Gouesbet G; Meunier-Guttin-Cluzel S; Grehan G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jan; 65(1 Pt 2):016212. PubMed ID: 11800773
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Periodic motions and homoclinic orbits in a discontinuous dynamical system on a single domain with multiple vector fields.
    Guo S; Luo ACJ
    Chaos; 2022 Mar; 32(3):033132. PubMed ID: 35364824
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Semiclassical approach to long time propagation in quantum chaos: predicting scars.
    Vergini EG
    Phys Rev Lett; 2012 Jun; 108(26):264101. PubMed ID: 23004984
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Semiclassical study on tunneling processes via complex-domain chaos.
    Onishi T; Shudo A; Ikeda KS; Takahashi K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Nov; 68(5 Pt 2):056211. PubMed ID: 14682875
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Geometric determination of classical actions of heteroclinic and unstable periodic orbits.
    Li J; Tomsovic S
    Phys Rev E; 2017 Jun; 95(6-1):062224. PubMed ID: 28709367
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On an origami structure of period-1 motions to homoclinic orbits in the Rössler system.
    Xing S; Luo ACJ
    Chaos; 2022 Dec; 32(12):123121. PubMed ID: 36587365
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multidimensional Hamiltonian chaos.
    Shilnikov LP
    Chaos; 1991 Aug; 1(2):134-136. PubMed ID: 12779905
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Homoclinic motions in the vibrational spectra of floppy systems: the LiCN molecule.
    Borondo F; Vergini E; Wisniacki DA; Zembekov AA; Benito RM
    J Chem Phys; 2005 Mar; 122(11):111101. PubMed ID: 15836191
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Symmetry of quantum phase space in a degenerate Hamiltonian system.
    Berman GP; Demikhovskii VY; Kamenev DI
    Chaos; 2000 Sep; 10(3):670-675. PubMed ID: 12779416
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical proof for chemostat chaos of Shilnikov's type.
    Deng B; Han M; Hsu SB
    Chaos; 2017 Mar; 27(3):033106. PubMed ID: 28364739
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phase space localization of chaotic eigenstates: violating ergodicity.
    Lakshminarayan A; Cerruti NR; Tomsovic S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jan; 63(1 Pt 2):016209. PubMed ID: 11304337
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Basic structures of the Shilnikov homoclinic bifurcation scenario.
    Medrano-T RO; Baptista MS; Caldas IL
    Chaos; 2005 Sep; 15(3):33112. PubMed ID: 16252986
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.