These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

377 related articles for article (PubMed ID: 15783916)

  • 1. Fractional quantum Hall states of atoms in optical lattices.
    Sørensen AS; Demler E; Lukin MD
    Phys Rev Lett; 2005 Mar; 94(8):086803. PubMed ID: 15783916
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exact parent Hamiltonian for the quantum Hall states in a lattice.
    Kapit E; Mueller E
    Phys Rev Lett; 2010 Nov; 105(21):215303. PubMed ID: 21231318
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-field fractional quantum Hall effect in optical lattices.
    Palmer RN; Jaksch D
    Phys Rev Lett; 2006 May; 96(18):180407. PubMed ID: 16712350
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reaching fractional quantum Hall states with optical flux lattices.
    Cooper NR; Dalibard J
    Phys Rev Lett; 2013 May; 110(18):185301. PubMed ID: 23683212
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tunable band topology reflected by fractional quantum Hall States in two-dimensional lattices.
    Wang D; Liu Z; Cao J; Fan H
    Phys Rev Lett; 2013 Nov; 111(18):186804. PubMed ID: 24237549
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mean-Field Scaling of the Superfluid to Mott Insulator Transition in a 2D Optical Superlattice.
    Thomas CK; Barter TH; Leung TH; Okano M; Jo GB; Guzman J; Kimchi I; Vishwanath A; Stamper-Kurn DM
    Phys Rev Lett; 2017 Sep; 119(10):100402. PubMed ID: 28949195
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-abelian gauge fields and topological insulators in shaken optical lattices.
    Hauke P; Tieleman O; Celi A; Olschläger C; Simonet J; Struck J; Weinberg M; Windpassinger P; Sengstock K; Lewenstein M; Eckardt A
    Phys Rev Lett; 2012 Oct; 109(14):145301. PubMed ID: 23083256
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wannier permanent wave functions for featureless bosonic mott insulators on the 1/3-filled kagome lattice.
    Parameswaran SA; Kimchi I; Turner AM; Stamper-Kurn DM; Vishwanath A
    Phys Rev Lett; 2013 Mar; 110(12):125301. PubMed ID: 25166814
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Realizing the Harper Hamiltonian with laser-assisted tunneling in optical lattices.
    Miyake H; Siviloglou GA; Kennedy CJ; Burton WC; Ketterle W
    Phys Rev Lett; 2013 Nov; 111(18):185302. PubMed ID: 24237531
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing states in the Mott insulator regime in the case of coherent bosons trapped in an optical lattice.
    Roberts DC; Burnett K
    Phys Rev Lett; 2003 Apr; 90(15):150401. PubMed ID: 12732021
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Realization of a fractional quantum Hall state with ultracold atoms.
    Léonard J; Kim S; Kwan J; Segura P; Grusdt F; Repellin C; Goldman N; Greiner M
    Nature; 2023 Jul; 619(7970):495-499. PubMed ID: 37344594
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exotic quantum spin models in spin-orbit-coupled Mott insulators.
    Radić J; Di Ciolo A; Sun K; Galitski V
    Phys Rev Lett; 2012 Aug; 109(8):085303. PubMed ID: 23002755
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Realization of the Hofstadter Hamiltonian with ultracold atoms in optical lattices.
    Aidelsburger M; Atala M; Lohse M; Barreiro JT; Paredes B; Bloch I
    Phys Rev Lett; 2013 Nov; 111(18):185301. PubMed ID: 24237530
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probing Site-Resolved Current in Strongly Interacting Superconducting Circuit Lattices.
    Du B; Suresh R; López S; Cadiente J; Ma R
    Phys Rev Lett; 2024 Aug; 133(6):060601. PubMed ID: 39178460
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fermionic atoms in a three dimensional optical lattice: observing Fermi surfaces, dynamics, and interactions.
    Köhl M; Moritz H; Stöferle T; Günter K; Esslinger T
    Phys Rev Lett; 2005 Mar; 94(8):080403. PubMed ID: 15783869
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Topological edge states and fractional quantum Hall effect from umklapp scattering.
    Klinovaja J; Loss D
    Phys Rev Lett; 2013 Nov; 111(19):196401. PubMed ID: 24266479
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental realization of strong effective magnetic fields in an optical lattice.
    Aidelsburger M; Atala M; Nascimbène S; Trotzky S; Chen YA; Bloch I
    Phys Rev Lett; 2011 Dec; 107(25):255301. PubMed ID: 22243087
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Local models of fractional quantum Hall states in lattices and physical implementation.
    Nielsen AE; Sierra G; Cirac JI
    Nat Commun; 2013; 4():2864. PubMed ID: 24284969
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Counting atoms using interaction blockade in an optical superlattice.
    Cheinet P; Trotzky S; Feld M; Schnorrberger U; Moreno-Cardoner M; Fölling S; Bloch I
    Phys Rev Lett; 2008 Aug; 101(9):090404. PubMed ID: 18851591
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chern Kondo Insulator in an Optical Lattice.
    Chen H; Liu XJ; Xie XC
    Phys Rev Lett; 2016 Jan; 116(4):046401. PubMed ID: 26871345
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.