These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 15784006)

  • 1. Optical rheology of biological cells.
    Wottawah F; Schinkinger S; Lincoln B; Ananthakrishnan R; Romeyke M; Guck J; Käs J
    Phys Rev Lett; 2005 Mar; 94(9):098103. PubMed ID: 15784006
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantifying the contribution of actin networks to the elastic strength of fibroblasts.
    Ananthakrishnan R; Guck J; Wottawah F; Schinkinger S; Lincoln B; Romeyke M; Moon T; Käs J
    J Theor Biol; 2006 Sep; 242(2):502-16. PubMed ID: 16720032
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scaling of F-actin network rheology to probe single filament elasticity and dynamics.
    Gardel ML; Shin JH; MacKintosh FC; Mahadevan L; Matsudaira PA; Weitz DA
    Phys Rev Lett; 2004 Oct; 93(18):188102. PubMed ID: 15525211
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adaptive rheology and ordering of cell cytoskeleton govern matrix rigidity sensing.
    Gupta M; Sarangi BR; Deschamps J; Nematbakhsh Y; Callan-Jones A; Margadant F; Mège RM; Lim CT; Voituriez R; Ladoux B
    Nat Commun; 2015 Jun; 6():7525. PubMed ID: 26109233
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physics of actin networks. I. Rheology of semi-dilute F-actin.
    Zaner KS
    Biophys J; 1995 Mar; 68(3):1019-26. PubMed ID: 7756522
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prestress and Area Compressibility of Actin Cortices Determine the Viscoelastic Response of Living Cells.
    Cordes A; Witt H; Gallemí-Pérez A; Brückner B; Grimm F; Vache M; Oswald T; Bodenschatz J; Flormann D; Lautenschläger F; Tarantola M; Janshoff A
    Phys Rev Lett; 2020 Aug; 125(6):068101. PubMed ID: 32845697
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single cell mechanics: stress stiffening and kinematic hardening.
    Fernández P; Ott A
    Phys Rev Lett; 2008 Jun; 100(23):238102. PubMed ID: 18643547
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dissecting the contribution of actin and vimentin intermediate filaments to mechanical phenotype of suspended cells using high-throughput deformability measurements and computational modeling.
    Gladilin E; Gonzalez P; Eils R
    J Biomech; 2014 Aug; 47(11):2598-605. PubMed ID: 24952458
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in the mechanical properties of fibroblasts during spreading: a micromanipulation study.
    Thoumine O; Cardoso O; Meister JJ
    Eur Biophys J; 1999; 28(3):222-34. PubMed ID: 10192936
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanics of biological networks: from the cell cytoskeleton to connective tissue.
    Pritchard RH; Huang YY; Terentjev EM
    Soft Matter; 2014 Mar; 10(12):1864-84. PubMed ID: 24652375
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamics of prestressed semiflexible polymer chains as a model of cell rheology.
    Rosenblatt N; Alencar AM; Majumdar A; Suki B; Stamenović D
    Phys Rev Lett; 2006 Oct; 97(16):168101. PubMed ID: 17155438
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational analysis of viscoelastic properties of crosslinked actin networks.
    Kim T; Hwang W; Lee H; Kamm RD
    PLoS Comput Biol; 2009 Jul; 5(7):e1000439. PubMed ID: 19609348
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of cytoskeletal drugs on actin cortex elasticity.
    Ayala YA; Pontes B; Hissa B; Monteiro AC; Farina M; Moura-Neto V; Viana NB; Nussenzveig HM
    Exp Cell Res; 2017 Feb; 351(2):173-181. PubMed ID: 28034672
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chapter 19: Mechanical response of cytoskeletal networks.
    Gardel ML; Kasza KE; Brangwynne CP; Liu J; Weitz DA
    Methods Cell Biol; 2008; 89():487-519. PubMed ID: 19118688
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Local measurements of viscoelastic parameters of adherent cell surfaces by magnetic bead microrheometry.
    Bausch AR; Ziemann F; Boulbitch AA; Jacobson K; Sackmann E
    Biophys J; 1998 Oct; 75(4):2038-49. PubMed ID: 9746546
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microrheology of entangled F-actin solutions.
    Gardel ML; Valentine MT; Crocker JC; Bausch AR; Weitz DA
    Phys Rev Lett; 2003 Oct; 91(15):158302. PubMed ID: 14611506
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Buckling of actin-coated membranes under application of a local force.
    Helfer E; Harlepp S; Bourdieu L; Robert J; MacKintosh FC; Chatenay D
    Phys Rev Lett; 2001 Aug; 87(8):088103. PubMed ID: 11497985
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cross-linker dynamics determine the mechanical properties of actin gels.
    Wachsstock DH; Schwarz WH; Pollard TD
    Biophys J; 1994 Mar; 66(3 Pt 1):801-9. PubMed ID: 8011912
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How actin crosslinking and bundling proteins cooperate to generate an enhanced cell mechanical response.
    Tseng Y; Kole TP; Lee JS; Fedorov E; Almo SC; Schafer BW; Wirtz D
    Biochem Biophys Res Commun; 2005 Aug; 334(1):183-92. PubMed ID: 15992772
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using cell monolayer rheology to probe average single cell mechanical properties.
    Sander M; Flesch J; Ott A
    Biorheology; 2015; 52(4):269-78. PubMed ID: 26639359
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.