These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 15784179)

  • 1. Purification and characterization of RihC, a xanthosine-inosine-uridine-adenosine-preferring hydrolase from Salmonella enterica serovar Typhimurium.
    Hansen MR; Dandanell G
    Biochim Biophys Acta; 2005 May; 1723(1-3):55-62. PubMed ID: 15784179
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of inosine-uridine nucleoside hydrolase (RihC) from Escherichia coli.
    Arivett B; Farone M; Masiragani R; Burden A; Judge S; Osinloye A; Minici C; Degano M; Robinson M; Kline P
    Biochim Biophys Acta; 2014 Mar; 1844(3):656-62. PubMed ID: 24473221
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Xanthosine utilization in Salmonella enterica serovar Typhimurium is recovered by a single aspartate-to-glycine substitution in xanthosine phosphorylase.
    Hansen MR; Tranekjaer Jørgensen J; Dandanell G
    J Bacteriol; 2006 Jun; 188(11):4153-7. PubMed ID: 16707709
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Guanosine-inosine-preferring nucleoside N-glycohydrolase from Crithidia fasciculata.
    Estupiñán B; Schramm VL
    J Biol Chem; 1994 Sep; 269(37):23068-73. PubMed ID: 8083208
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calcium-stimulated guanosine--inosine nucleosidase from yellow lupin (Lupinus luteus).
    Szuwart M; Starzyńska E; Pietrowska-Borek M; Guranowski A
    Phytochemistry; 2006 Jul; 67(14):1476-85. PubMed ID: 16820181
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrolytic cleavage of purine ribonucleosides in Aspergillus phoenicis.
    Abdel-Fatah OM; Elsayed MA; Elshafei AM
    J Basic Microbiol; 2003; 43(6):439-48. PubMed ID: 14625894
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural explanation for the tunable substrate specificity of an E. coli nucleoside hydrolase: insights from molecular dynamics simulations.
    Lenz SAP; Wetmore SD
    J Comput Aided Mol Des; 2018 Dec; 32(12):1375-1388. PubMed ID: 30478756
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A second purine nucleoside phosphorylase in Escherichia coli K-12. II. Properties of xanthosine phosphorylase and its induction by xanthosine.
    Hammer-Jespersen K; Buxton RS; Hansen TD
    Mol Gen Genet; 1980; 179(2):341-8. PubMed ID: 7007809
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inosine nucleosidase from Azotobacter vinelandii. Purification and properties.
    Yoshino M; Tsukada T; Tsushima K
    Arch Microbiol; 1978 Oct; 119(1):59-64. PubMed ID: 31149
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Saccharomyces cerevisiae URH1 (encoding uridine-cytidine N-ribohydrolase): functional complementation by a nucleoside hydrolase from a protozoan parasite and by a mammalian uridine phosphorylase.
    Mitterbauer R; Karl T; Adam G
    Appl Environ Microbiol; 2002 Mar; 68(3):1336-43. PubMed ID: 11872485
    [TBL] [Abstract][Full Text] [Related]  

  • 11. AMP and GMP Catabolism in Arabidopsis Converge on Xanthosine, Which Is Degraded by a Nucleoside Hydrolase Heterocomplex.
    Baccolini C; Witte CP
    Plant Cell; 2019 Mar; 31(3):734-751. PubMed ID: 30787180
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Purine-specific nucleoside N-ribohydrolase from Trypanosoma brucei brucei. Purification, specificity, and kinetic mechanism.
    Parkin DW
    J Biol Chem; 1996 Sep; 271(36):21713-9. PubMed ID: 8702965
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The RihA, RihB, and RihC ribonucleoside hydrolases of Escherichia coli. Substrate specificity, gene expression, and regulation.
    Petersen C; Møller LB
    J Biol Chem; 2001 Jan; 276(2):884-94. PubMed ID: 11027694
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of a purine-specific nucleoside hydrolase in spore germination of Bacillus thuringiensis.
    Liang L; He X; Liu G; Tan H
    Microbiology (Reading); 2008 May; 154(Pt 5):1333-1340. PubMed ID: 18451042
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Xanthosine and xanthine. Substrate properties with purine nucleoside phosphorylases, and relevance to other enzyme systems.
    Stoychev G; Kierdaszuk B; Shugar D
    Eur J Biochem; 2002 Aug; 269(16):4048-57. PubMed ID: 12180982
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Purification and properties of inosine-guanosine phosphorylase from Escherichia coli K-12.
    Koszalka GW; Vanhooke J; Short SA; Hall WW
    J Bacteriol; 1988 Aug; 170(8):3493-8. PubMed ID: 3042752
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Purification and properties of purine nucleoside phosphorylase from Salmonella typhimurium.
    Robertson BC; Hoffee PA
    J Biol Chem; 1973 Mar; 248(6):2040-3. PubMed ID: 4570469
    [No Abstract]   [Full Text] [Related]  

  • 18. Arabidopsis thaliana nucleosidase mutants provide new insights into nucleoside degradation.
    Riegler H; Geserick C; Zrenner R
    New Phytol; 2011 Jul; 191(2):349-359. PubMed ID: 21599668
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A purine nucleoside hydrolase from Trypanosoma gambiense, purification and properties.
    Schmidt G; Walter RD; Königk E
    Tropenmed Parasitol; 1975 Mar; 26(1):19-26. PubMed ID: 238316
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation and initial characterization of the uridine phosphorylase from Salmonella typhimurium.
    Molchan OK; Dmitrieva NA; Romanova DV; Lopes LE; Debabov VG; Mironov AS
    Biochemistry (Mosc); 1998 Feb; 63(2):195-9. PubMed ID: 9526114
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.