BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 15784232)

  • 1. Chemical synthesis of 24-beta-D-galactopyranosides of bile acids: a new type of bile acid conjugates in human urine.
    Kakiyama G; Sadakiyo S; Iida T; Mushiake K; Goto T; Mano N; Goto J; Nambara T
    Chem Phys Lipids; 2005 Apr; 134(2):141-50. PubMed ID: 15784232
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of a novel conjugate in human urine: bile acid acyl galactosides.
    Goto T; Shibata A; Sasaki D; Suzuki N; Hishinuma T; Kakiyama G; Iida T; Mano N; Goto J
    Steroids; 2005 Mar; 70(3):185-92. PubMed ID: 15763597
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative formation of lithocholic acid from chenodeoxycholic and ursodeoxycholic acids in the colon.
    Bazzoli F; Fromm H; Sarva RP; Sembrat RF; Ceryak S
    Gastroenterology; 1982 Oct; 83(4):753-60. PubMed ID: 7106506
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure-retention correlation of isomeric bile acids in inclusion high-performance liquid chromatography with methyl beta-cyclodextrin.
    Momose T; Yamaguchi Y; Iida T; Goto J; Nambara T
    Lipids; 1998 Jan; 33(1):101-8. PubMed ID: 9470179
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bile acid-cysteamine conjugates: structural properties, gelation, and toxicity evaluation.
    Noponen V; Belt H; Lahtinen M; Valkonen A; Salo H; Ulrichová J; Galandáková A; Sievänen E
    Steroids; 2012 Feb; 77(3):193-203. PubMed ID: 22133545
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of molecular associations of some hydrophobic and hydrophilic bile acids by infrared and Raman spectroscopy.
    Lamcharfi E; Cohen-Solal C; Parquet M; Lutton C; Dupré J; Meyer C
    Eur Biophys J; 1997; 25(4):285-91. PubMed ID: 9112757
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potential bile acid metabolites. 24. An efficient synthesis of carboxyl-linked glucosides and their chemical properties.
    Lida T; Nakamori R; Yabuta R; Yada S; Takagi Y; Mano N; Ikegawa S; Goto J; Nambara T
    Lipids; 2002 Jan; 37(1):101-10. PubMed ID: 11876257
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical synthesis of the 3-sulfooxy-7-N-acetylglucosaminyl-24-amidated conjugates of 3beta,7beta-dihydroxy-5-cholen-24-oic acid, and related compounds: unusual, major metabolites of bile acid in a patient with Niemann-Pick disease type C1.
    Iida T; Kakiyama G; Hibiya Y; Miyata S; Inoue T; Ohno K; Goto T; Mano N; Goto J; Nambara T; Hofmann AF
    Steroids; 2006 Jan; 71(1):18-29. PubMed ID: 16197972
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Evidence of daily stability of fasting serum bile acid levels in healthy volunteers].
    Stepani P; Iglicki F; Guerhardt MF; Myara A; Capron JP
    Gastroenterol Clin Biol; 2000 May; 24(5):594-5. PubMed ID: 10891758
    [No Abstract]   [Full Text] [Related]  

  • 10. Bile acids. LIV--mass spectra of conjugated bile acids.
    Shaw R; Elliott WH
    Biomed Mass Spectrom; 1978 Jul; 5(7):433-8. PubMed ID: 678613
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical Synthesis of Rare Natural Bile Acids: 11α-Hydroxy Derivatives of Lithocholic and Chenodeoxycholic Acids.
    Namegawa K; Iida K; Omura K; Ogawa S; Hofmann AF; Iida T
    Lipids; 2018 Apr; 53(4):403-411. PubMed ID: 29520792
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 13C nuclear magnetic resonance data of bile acid derivatives.
    Dias JR; Gao H; Kolehmainen E
    Spectrochim Acta A Mol Biomol Spectrosc; 2000 Jan; 56A(1):53-77. PubMed ID: 10728856
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [The significance of the bacterial steroid degradation for the etiology of large bowel cancer. VIII. Transformation of cholic-, chenodeoxycholic-, and deoxycholic acid by lecithinase-lipase-negative clostridia].
    Edenharder R; Deser HJ
    Zentralbl Bakteriol Mikrobiol Hyg B; 1981; 174(1-2):91-104. PubMed ID: 7324622
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aqueous solubility and acidity constants of cholic, deoxycholic, chenodeoxycholic, and ursodeoxycholic acids.
    Moroi Y; Kitagawa M; Itoh H
    J Lipid Res; 1992 Jan; 33(1):49-53. PubMed ID: 1552232
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of [3,4-(13)c(2)]-enriched bile salts as NMR probes of protein-ligand interactions.
    Tochtrop GP; DeKoster GT; Cistola DP; Covey DF
    J Org Chem; 2002 Sep; 67(19):6764-71. PubMed ID: 12227809
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sulphation of lithocholic acid in the colon-carcinoma cell line CaCo-2.
    Halvorsen B; Kase BF; Prydz K; Garagozlian S; Andresen MS; Kolset SO
    Biochem J; 1999 Nov; 343 Pt 3(Pt 3):533-9. PubMed ID: 10527930
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The mutagenicity of bile acids using a fluctuation test.
    Watabe J; Bernstein H
    Mutat Res; 1985; 158(1-2):45-51. PubMed ID: 2995801
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescence properties of trans-ethyl-p-(dimethylamino) cinnamate in presence of bile acid host.
    Singh TS; Mitra S
    J Photochem Photobiol B; 2009 Sep; 96(3):193-200. PubMed ID: 19646893
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heuman indices of hydrophobicity of bile acids and their comparison with a newly developed and conventional molecular descriptors.
    Poša M
    Biochimie; 2014 Feb; 97():28-38. PubMed ID: 24076126
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Steroid ring hydroxylation patterns govern cooperativity in human bile acid binding protein.
    Tochtrop GP; Bruns JL; Tang C; Covey DF; Cistola DP
    Biochemistry; 2003 Oct; 42(40):11561-7. PubMed ID: 14529265
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.