These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
278 related articles for article (PubMed ID: 15784251)
1. High hydrostatic pressure dissociates early aggregates of TTR105-115, but not the mature amyloid fibrils. Dirix C; Meersman F; MacPhee CE; Dobson CM; Heremans K J Mol Biol; 2005 Apr; 347(5):903-9. PubMed ID: 15784251 [TBL] [Abstract][Full Text] [Related]
2. Effect of pressure on islet amyloid polypeptide aggregation: revealing the polymorphic nature of the fibrillation process. Radovan D; Smirnovas V; Winter R Biochemistry; 2008 Jun; 47(24):6352-60. PubMed ID: 18498175 [TBL] [Abstract][Full Text] [Related]
3. Identification of the core structure of lysozyme amyloid fibrils by proteolysis. Frare E; Mossuto MF; Polverino de Laureto P; Dumoulin M; Dobson CM; Fontana A J Mol Biol; 2006 Aug; 361(3):551-61. PubMed ID: 16859705 [TBL] [Abstract][Full Text] [Related]
4. Dissociation of amyloid fibrils of alpha-synuclein and transthyretin by pressure reveals their reversible nature and the formation of water-excluded cavities. Foguel D; Suarez MC; Ferrão-Gonzales AD; Porto TC; Palmieri L; Einsiedler CM; Andrade LR; Lashuel HA; Lansbury PT; Kelly JW; Silva JL Proc Natl Acad Sci U S A; 2003 Aug; 100(17):9831-6. PubMed ID: 12900507 [TBL] [Abstract][Full Text] [Related]
5. Transthyretin fibrillogenesis entails the assembly of monomers: a molecular model for in vitro assembled transthyretin amyloid-like fibrils. Cardoso I; Goldsbury CS; Müller SA; Olivieri V; Wirtz S; Damas AM; Aebi U; Saraiva MJ J Mol Biol; 2002 Apr; 317(5):683-95. PubMed ID: 11955017 [TBL] [Abstract][Full Text] [Related]
6. Lysozyme amyloidogenesis is accelerated by specific nicking and fragmentation but decelerated by intact protein binding and conversion. Mishra R; Sörgjerd K; Nyström S; Nordigården A; Yu YC; Hammarström P J Mol Biol; 2007 Feb; 366(3):1029-44. PubMed ID: 17196616 [TBL] [Abstract][Full Text] [Related]
7. Chemical dissection and reassembly of amyloid fibrils formed by a peptide fragment of transthyretin. MacPhee CE; Dobson CM J Mol Biol; 2000 Apr; 297(5):1203-15. PubMed ID: 10764584 [TBL] [Abstract][Full Text] [Related]
8. Molecular dynamics studies of the process of amyloid aggregation of peptide fragments of transthyretin. Paci E; Gsponer J; Salvatella X; Vendruscolo M J Mol Biol; 2004 Jul; 340(3):555-69. PubMed ID: 15210354 [TBL] [Abstract][Full Text] [Related]
9. Stability and fibril formation properties of human and fish transthyretin, and of the Escherichia coli transthyretin-related protein. Lundberg E; Olofsson A; Westermark GT; Sauer-Eriksson AE FEBS J; 2009 Apr; 276(7):1999-2011. PubMed ID: 19250316 [TBL] [Abstract][Full Text] [Related]
10. Beta-amyloid fibril formation is promoted by step edges of highly oriented pyrolytic graphite. Losic D; Martin LL; Aguilar MI; Small DH Biopolymers; 2006; 84(5):519-26. PubMed ID: 16752395 [TBL] [Abstract][Full Text] [Related]
11. Effect of nitric oxide in amyloid fibril formation on transthyretin-related amyloidosis. Saito S; Ando Y; Nakamura M; Ueda M; Kim J; Ishima Y; Akaike T; Otagiri M Biochemistry; 2005 Aug; 44(33):11122-9. PubMed ID: 16101296 [TBL] [Abstract][Full Text] [Related]
12. Fibrillar beta-lactoglobulin gels: Part 1. Fibril formation and structure. Gosal WS; Clark AH; Ross-Murphy SB Biomacromolecules; 2004; 5(6):2408-19. PubMed ID: 15530058 [TBL] [Abstract][Full Text] [Related]
13. Fibrils with parallel in-register structure constitute a major class of amyloid fibrils: molecular insights from electron paramagnetic resonance spectroscopy. Margittai M; Langen R Q Rev Biophys; 2008; 41(3-4):265-97. PubMed ID: 19079806 [TBL] [Abstract][Full Text] [Related]
14. Conversion of non-fibrillar beta-sheet oligomers into amyloid fibrils in Alzheimer's disease amyloid peptide aggregation. Benseny-Cases N; Cócera M; Cladera J Biochem Biophys Res Commun; 2007 Oct; 361(4):916-21. PubMed ID: 17679138 [TBL] [Abstract][Full Text] [Related]
15. Transthyretin forms amyloid fibrils at physiological pH with ultrasonication. Misumi Y; Ueda M; Fujimori H; Shinriki S; Meng W; Kim J; Saito S; Obayashi K; Uchino M; Ando Y Amyloid; 2008 Dec; 15(4):234-9. PubMed ID: 19065294 [TBL] [Abstract][Full Text] [Related]
16. Protein denaturation and aggregation: Cellular responses to denatured and aggregated proteins. Meredith SC Ann N Y Acad Sci; 2005 Dec; 1066():181-221. PubMed ID: 16533927 [TBL] [Abstract][Full Text] [Related]
17. Probing the pressure-temperature stability of amyloid fibrils provides new insights into their molecular properties. Meersman F; Dobson CM Biochim Biophys Acta; 2006 Mar; 1764(3):452-60. PubMed ID: 16337233 [TBL] [Abstract][Full Text] [Related]
18. In vitro characterization of lactoferrin aggregation and amyloid formation. Nilsson MR; Dobson CM Biochemistry; 2003 Jan; 42(2):375-82. PubMed ID: 12525164 [TBL] [Abstract][Full Text] [Related]
19. Techniques to study amyloid fibril formation in vitro. Nilsson MR Methods; 2004 Sep; 34(1):151-60. PubMed ID: 15283924 [TBL] [Abstract][Full Text] [Related]
20. Full-length prion protein aggregates to amyloid fibrils and spherical particles by distinct pathways. El Moustaine D; Perrier V; Smeller L; Lange R; Torrent J FEBS J; 2008 May; 275(9):2021-31. PubMed ID: 18355314 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]