BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 1578486)

  • 1. Novel anthraquinone inhibitors of human leukocyte elastase and cathepsin G.
    Zembower DE; Kam CM; Powers JC; Zalkow LH
    J Med Chem; 1992 May; 35(9):1597-605. PubMed ID: 1578486
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stereoselective synthesis of peptidyl trifluoromethyl alcohols and ketones: inhibitory potency against human leucocyte elastase, cathepsin G, porcine pancreatic elastase and HIV-1 protease.
    Amour A; Reboud-Ravaux M; de Rosny E; Abouabdellah A; Bégue JP; Bonnet-Delpon D; Le Gall M
    J Pharm Pharmacol; 1998 Jun; 50(6):593-600. PubMed ID: 9680068
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of the human leukocyte endopeptidases elastase and cathepsin G and of porcine pancreatic elastase by N-oleoyl derivatives of heparin.
    Baici A; Diczházi C; Neszmélyi A; Móczár E; Hornebeck W
    Biochem Pharmacol; 1993 Nov; 46(9):1545-9. PubMed ID: 8240409
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism-based inhibition of human leukocyte elastase and cathepsin G by substituted dihydrouracils.
    Groutas WC; Huang H; Epp JB; Venkataraman R; McClenahan JJ; Tagusagawa F
    Biochim Biophys Acta; 1994 Nov; 1227(3):130-6. PubMed ID: 7986820
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient inhibition of human leukocyte elastase and cathepsin G by saccharin derivatives.
    Groutas WC; Houser-Archield N; Chong LS; Venkataraman R; Epp JB; Huang H; McClenahan JJ
    J Med Chem; 1993 Oct; 36(21):3178-81. PubMed ID: 8230105
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel potential mechanism-based inhibitors of human leukocyte elastase and cathepsin G: derivatives of isothiazolidin-3-one.
    Groutas WC; Chong LS; Venkataraman R
    Biochem Biophys Res Commun; 1993 Dec; 197(2):730-9. PubMed ID: 8267609
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Substituted 3-oxo-1,2,5-thiadiazolidine 1,1-dioxides: a new class of potential mechanism-based inhibitors of human leukocyte elastase and cathepsin G.
    Groutas WC; Kuang R; Venkataraman R
    Biochem Biophys Res Commun; 1994 Jan; 198(1):341-9. PubMed ID: 8292039
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of a trihexacontapeptide corresponding to the sequence 8-70 of eglin c and studies on the relationship between the structure and the inhibitory activity against human leukocyte elastase, cathepsin G and alpha-chymotrypsin.
    Okada Y; Tsuboi S; Tsuda Y; Nagamatsu Y; Yamamoto J
    FEBS Lett; 1990 Oct; 272(1-2):113-6. PubMed ID: 2226822
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 6-Acylamino-2-1[(ethylsulfonyl)oxy]-1H-isoindole-1,3-diones mechanism-based inhibitors of human leukocyte elastase and cathepsin G: effect of chirality in the 6-acylamino substituent on inhibitory potency and selectivity.
    Vagnoni LM; Gronostaj M; Kerrigan JE
    Bioorg Med Chem; 2001 Mar; 9(3):637-45. PubMed ID: 11310598
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The inhibition of human neutrophil elastase and cathepsin G by peptidyl 1,2-dicarbonyl derivatives.
    Mehdi S; Angelastro MR; Burkhart JP; Koehl JR; Peet NP; Bey P
    Biochem Biophys Res Commun; 1990 Jan; 166(2):595-600. PubMed ID: 2302225
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of human neutrophil elastase and cathepsin G by a biphenyl disulfonic acid copolymer.
    Janusz MJ; Hare M
    Int J Immunopharmacol; 1994 Aug; 16(8):623-32. PubMed ID: 7989132
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design, synthesis and biological evaluation of succinimide derivatives as potential mechanism-based inhibitors of human leukocyte elastase, cathepsin G and proteinase 3.
    Groutas WC; Brubaker MJ; Chong LS; Venkataraman R; Huang H; Epp JB; Kuang R; Hoidal JR
    Bioorg Med Chem; 1995 Apr; 3(4):375-81. PubMed ID: 8581420
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new class of heterocyclic serine protease inhibitors. Inhibition of human leukocyte elastase, porcine pancreatic elastase, cathepsin G, and bovine chymotrypsin A alpha with substituted benzoxazinones, quinazolines, and anthranilates.
    Teshima T; Griffin JC; Powers JC
    J Biol Chem; 1982 May; 257(9):5085-91. PubMed ID: 7040392
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The kinetic mechanism of inhibition of human leukocyte elastase by MR889, a new cyclic thiolic compound.
    Baici A; Pelloso R; Hörler D
    Biochem Pharmacol; 1990 Mar; 39(5):919-24. PubMed ID: 2310417
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition by recombinant SLPI and half-SLPI (Asn55-Ala107) of elastase and cathepsin G activities: consequence for neutrophil-platelet cooperation.
    Renesto P; Balloy V; Kamimura T; Masuda K; Imaizumi A; Chignard M
    Br J Pharmacol; 1993 Apr; 108(4):1100-6. PubMed ID: 8097952
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction of the human leukocyte proteinases elastase and cathepsin G with gold, silver and copper compounds.
    Baici A; Camus A; Marsich N
    Biochem Pharmacol; 1984 Jun; 33(12):1859-65. PubMed ID: 6428416
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of human leukocyte elastase, cathepsin G, chymotrypsin A alpha, and porcine pancreatic elastase with substituted isobenzofuranones and benzopyrandiones.
    Hemmi K; Harper JW; Powers JC
    Biochemistry; 1985 Apr; 24(8):1841-8. PubMed ID: 3848330
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isoxazoline derivatives as potential inhibitors of the proteolytic enzymes human leukocyte elastase, cathepsin G and proteinase 3: a structure-activity relationship study.
    Groutas WC; Venkataraman R; Chong LS; Yoder JE; Epp JB; Stanga MA; Kim EH
    Bioorg Med Chem; 1995 Feb; 3(2):125-8. PubMed ID: 7796046
    [No Abstract]   [Full Text] [Related]  

  • 19. Inhibition of human leukocyte elastase (HLE) by N-substituted peptidyl trifluoromethyl ketones.
    Skiles JW; Fuchs V; Miao C; Sorcek R; Grozinger KG; Mauldin SC; Vitous J; Mui PW; Jacober S; Chow G
    J Med Chem; 1992 Feb; 35(4):641-62. PubMed ID: 1542092
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Degradation of cartilage matrix proteoglycan by human neutrophils involves both elastase and cathepsin G.
    Janusz MJ; Doherty NS
    J Immunol; 1991 Jun; 146(11):3922-8. PubMed ID: 2033261
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.