These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
62. Correlation of intraoperative collateral perfusion pressure during carotid endarterectomy and status of the contralateral carotid artery and collateral cerebral blood flow. AbuRahma AF; Mousa AY; Stone PA; Hass SM; Dean LS; Keiffer T Ann Vasc Surg; 2011 Aug; 25(6):830-6. PubMed ID: 21680143 [TBL] [Abstract][Full Text] [Related]
63. 123I-IMP-SPECT in a patient with cerebral proliferative angiopathy: a case report. Kimiwada T; Hayashi T; Shirane R; Tominaga T J Stroke Cerebrovasc Dis; 2013 Nov; 22(8):1432-5. PubMed ID: 23830953 [TBL] [Abstract][Full Text] [Related]
64. [Cerebral blood flow distribution and reactivity during the symptom-free stages of transient ischemic attacks--a 99mTc-HMPAO SPECT study]. Isaka Y; Iiji O; Imaizumi M; Ashida K Rinsho Shinkeigaku; 1992 Aug; 32(8):834-9. PubMed ID: 1490310 [TBL] [Abstract][Full Text] [Related]
66. [Importance of the evaluation of cerebral vasoreactive capacity in the indication for carotid endarterectomy]. Demarin V; Rundek T; Despot I; Podobnik-Sarkanji S; Thaller N Angiologia; 1993; 45(1):10-5. PubMed ID: 8476134 [TBL] [Abstract][Full Text] [Related]
67. [Utility and validity of SPECT and PET in the perioperative managements of patients with cervical internal carotid artery stenosis]. Kuroda S Brain Nerve; 2011 Sep; 63(9):933-44. PubMed ID: 21878695 [TBL] [Abstract][Full Text] [Related]
68. Comparison of conventional region of interest and statistical mapping method in brain single-photon emission computed tomography for prediction of hyperperfusion after carotid endarterectomy. Hosoda K; Kawaguchi T; Ishii K; Minoshima S; Kohmura E Neurosurgery; 2005 Jul; 57(1):32-41; discussion 32-41. PubMed ID: 15987538 [TBL] [Abstract][Full Text] [Related]
69. Reduced vascular reserve measured by stressed single photon emission computed tomography carries a high risk for stroke in patients with carotid stenosis. Yamamoto KK; Miyata T; Momose T; Nagayoshi M; Akagi D; Hosaka A; Miyahara T; Ishii S; Kimura H; Deguchi J; Shigematsu K; Shigematsu H; Nagawa H Int Angiol; 2006 Dec; 25(4):385-8. PubMed ID: 17164745 [TBL] [Abstract][Full Text] [Related]
70. Sequential change of hemodynamic reserve in patients with major cerebral artery occlusion or severe stenosis. Hasegawa Y; Yamaguchi T; Tsuchiya T; Minematsu K; Nishimura T Neuroradiology; 1992; 34(1):15-21. PubMed ID: 1553032 [TBL] [Abstract][Full Text] [Related]
72. Multiparametric flow analysis using four-dimensional flow magnetic resonance imaging can detect cerebral hemodynamic impairment in patients with internal carotid artery stenosis. Ando T; Sekine T; Murai Y; Orita E; Takagi R; Amano Y; Iwata K; Nakaza M; Ogawa M; Obara M; Kumita SI Neuroradiology; 2020 Nov; 62(11):1421-1431. PubMed ID: 32518970 [TBL] [Abstract][Full Text] [Related]
73. Qualitative versus quantitative assessment of cerebrovascular reactivity to acetazolamide using iodine-123-N-isopropyl-p-iodoamphetamine SPECT in patients with unilateral major cerebral artery occlusive disease. Ogasawara K; Okuguchi T; Sasoh M; Kobayashi M; Yukawa H; Terasaki K; Inoue T; Ogawa A AJNR Am J Neuroradiol; 2003; 24(6):1090-5. PubMed ID: 12812931 [TBL] [Abstract][Full Text] [Related]
74. Quantitative evaluation of mean transit times obtained with dynamic susceptibility contrast-enhanced MR imaging and with (133)Xe SPECT in occlusive cerebrovascular disease. Kikuchi K; Murase K; Miki H; Yasuhara Y; Sugawara Y; Mochizuki T; Ikezoe J; Ohue S AJR Am J Roentgenol; 2002 Jul; 179(1):229-35. PubMed ID: 12076942 [TBL] [Abstract][Full Text] [Related]
75. SPECT study of cerebral blood flow reactivity after acetazolamide in patients with transient ischemic attacks. Chollet F; Celsis P; Clanet M; Guiraud-Chaumeil B; Rascol A; Marc-Vergnes JP Stroke; 1989 Apr; 20(4):458-64. PubMed ID: 2784599 [TBL] [Abstract][Full Text] [Related]
76. Efficacy of arterial spin labeling magnetic resonance imaging with multiple post-labeling delays to predict postoperative cerebral hyperperfusion in carotid endarterectomy. Endo H; Fujimura M; Saito A; Endo T; Ootomo K; Tominaga T Neurol Res; 2021 Mar; 43(3):252-258. PubMed ID: 33190623 [No Abstract] [Full Text] [Related]
77. Cerebral hemodynamics associated with fluid-attenuated inversion recovery hyperintense vessels in patients with extracranial carotid artery stenosis. Nishimoto T; Ishihara H; Oka F; Shimokawa M; Suzuki M Neuroradiology; 2020 Jun; 62(6):677-684. PubMed ID: 32152648 [TBL] [Abstract][Full Text] [Related]
78. Assessment of intracranial circle after carotid endarterectomy. Parenti G; Fiori L; Marconi F Neurol Res; 1992; 14(2 Suppl):143-5. PubMed ID: 1355872 [TBL] [Abstract][Full Text] [Related]
79. Viable tissue in an area of severely reduced perfusion demonstrated with I-123 iomazenil brain SPECT imaging of benzodiazepine receptors. Hayashida K; Fukuchi K; Hasegawa Y; Kume N; Cho IH; Nishimura T Clin Nucl Med; 1999 Aug; 24(8):576-8. PubMed ID: 10439177 [TBL] [Abstract][Full Text] [Related]
80. [Effect of thrombus endarterectomy (TEA) on the regional cerebral bloodflow (rCBF) in patients with unilateral internal carotid artery stenosis]. Otte A; Ostwald E; Rem JA; Götze M; Radü EW; Müller-Brand J Nuklearmedizin; 1997 Jan; 36(1):23-8. PubMed ID: 9082337 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]