BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 15785910)

  • 1. [Esterase activity of human organotypic cornea construct (HCC) as in vitro model for permeation studies].
    Meyer L; Bednarz J; Müller-Goymann CC; Reichl S
    Ophthalmologe; 2005 Oct; 102(10):971-80. PubMed ID: 15785910
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human cornea construct HCC-an alternative for in vitro permeation studies? A comparison with human donor corneas.
    Reichl S; Döhring S; Bednarz J; Müller-Goymann CC
    Eur J Pharm Biopharm; 2005 Jul; 60(2):305-8. PubMed ID: 15939241
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human corneal equivalent as cell culture model for in vitro drug permeation studies.
    Reichl S; Bednarz J; Müller-Goymann CC
    Br J Ophthalmol; 2004 Apr; 88(4):560-5. PubMed ID: 15031177
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell culture models of the human cornea - a comparative evaluation of their usefulness to determine ocular drug absorption in-vitro.
    Reichl S
    J Pharm Pharmacol; 2008 Mar; 60(3):299-307. PubMed ID: 18284809
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reconstruction of an in vitro cornea and its use for drug permeation studies from different formulations containing pilocarpine hydrochloride.
    Tegtmeyer S; Papantoniou I; Müller-Goymann CC
    Eur J Pharm Biopharm; 2001 Mar; 51(2):119-25. PubMed ID: 11226818
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The in vitro evaluation of polyethylene glycol esters of hydrocortisone 21-succinate as ocular prodrugs.
    Foroutan SM; Watson DG
    Int J Pharm; 1999 May; 182(1):79-92. PubMed ID: 10332077
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Development of an organotypic corneal construction as an in vitro model for permeability studies].
    Reichl S; Müller-Goymann CC
    Ophthalmologe; 2001 Sep; 98(9):853-8. PubMed ID: 11594225
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reconstruction of a tissue-engineered cornea with porcine corneal acellular matrix as the scaffold.
    Fu Y; Fan X; Chen P; Shao C; Lu W
    Cells Tissues Organs; 2010; 191(3):193-202. PubMed ID: 19690400
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The use of a porcine organotypic cornea construct for permeation studies from formulations containing befunolol hydrochloride.
    Reichl S; Müller-Goymann CC
    Int J Pharm; 2003 Jan; 250(1):191-201. PubMed ID: 12480285
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Constructing an in vitro cornea from cultures of the three specific corneal cell types.
    Schneider AI; Maier-Reif K; Graeve T
    In Vitro Cell Dev Biol Anim; 1999 Oct; 35(9):515-26. PubMed ID: 10548433
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Esterase distribution in the rabbit cornea and its implications in ocular drug bioavailability.
    Lee VH; Morimoto KW; Stratford RE
    Biopharm Drug Dispos; 1982; 3(4):291-300. PubMed ID: 7159685
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of human corneal epithelial cell model as a surrogate for corneal permeability assessment: metabolism and transport.
    Xiang CD; Batugo M; Gale DC; Zhang T; Ye J; Li C; Zhou S; Wu EY; Zhang EY
    Drug Metab Dispos; 2009 May; 37(5):992-8. PubMed ID: 19220984
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancement of corneal permeation of riboflavin-5'-phosphate through vitamin E TPGS: a promising approach in corneal trans-epithelial cross linking treatment.
    Ostacolo C; Caruso C; Tronino D; Troisi S; Laneri S; Pacente L; Del Prete A; Sacchi A
    Int J Pharm; 2013 Jan; 440(2):148-53. PubMed ID: 23046664
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Construction of a complete rabbit cornea substitute using a fibrin-agarose scaffold.
    Alaminos M; Del Carmen Sánchez-Quevedo M; Muñoz-Avila JI; Serrano D; Medialdea S; Carreras I; Campos A
    Invest Ophthalmol Vis Sci; 2006 Aug; 47(8):3311-7. PubMed ID: 16877396
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression of proliferating cell nuclear antigen in corneas kept in long term culture.
    Gan L; Fagerholm P; Ekenbark S
    Acta Ophthalmol Scand; 1998 Jun; 76(3):308-13. PubMed ID: 9686843
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aldehyde dehydrogenase (ALDH) 3A1 expression by the human keratocyte and its repair phenotypes.
    Pei Y; Reins RY; McDermott AM
    Exp Eye Res; 2006 Nov; 83(5):1063-73. PubMed ID: 16822507
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation and cultivation of canine corneal cells for in vitro studies on the anti-inflammatory effects of dexamethasone.
    Werner A; Braun M; Kietzmann M
    Vet Ophthalmol; 2008; 11(2):67-74. PubMed ID: 18302570
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Fas-Fas ligand system and other modulators of apoptosis in the cornea.
    Wilson SE; Li Q; Weng J; Barry-Lane PA; Jester JV; Liang Q; Wordinger RJ
    Invest Ophthalmol Vis Sci; 1996 Jul; 37(8):1582-92. PubMed ID: 8675401
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a serum-free human cornea construct for in vitro drug absorption studies: the influence of varying cultivation parameters on barrier characteristics.
    Hahne M; Reichl S
    Int J Pharm; 2011 Sep; 416(1):268-79. PubMed ID: 21771646
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Keratin-chitosan membranes as scaffold for tissue engineering of human cornea.
    Vázquez N; Chacón M; Meana Á; Menéndez-Menéndez Y; Ferrero-Gutierrez A; Cereijo-Martín D; Naveiras M; Merayo-Lloves J
    Histol Histopathol; 2015 Jul; 30(7):813-21. PubMed ID: 25587895
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.