These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 15786522)

  • 1. A microfluidic approach for screening submicroliter volumes against multiple reagents by using preformed arrays of nanoliter plugs in a three-phase liquid/liquid/gas flow.
    Zheng B; Ismagilov RF
    Angew Chem Int Ed Engl; 2005 Apr; 44(17):2520-3. PubMed ID: 15786522
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidic cartridges preloaded with nanoliter plugs of reagents: an alternative to 96-well plates for screening.
    Chen DL; Ismagilov RF
    Curr Opin Chem Biol; 2006 Jun; 10(3):226-31. PubMed ID: 16677848
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using nanoliter plugs in microfluidics to facilitate and understand protein crystallization.
    Zheng B; Gerdts CJ; Ismagilov RF
    Curr Opin Struct Biol; 2005 Oct; 15(5):548-55. PubMed ID: 16154351
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Convection-Enhanced Biopatterning with Recirculation of Hydrodynamically Confined Nanoliter Volumes of Reagents.
    Autebert J; Cors JF; Taylor DP; Kaigala GV
    Anal Chem; 2016 Mar; 88(6):3235-42. PubMed ID: 26837532
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic chemical analysis systems.
    Livak-Dahl E; Sinn I; Burns M
    Annu Rev Chem Biomol Eng; 2011; 2():325-53. PubMed ID: 22432622
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Production of arrays of chemically distinct nanolitre plugs via repeated splitting in microfluidic devices.
    Adamson DN; Mustafi D; Zhang JX; Zheng B; Ismagilov RF
    Lab Chip; 2006 Sep; 6(9):1178-86. PubMed ID: 16929397
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using three-phase flow of immiscible liquids to prevent coalescence of droplets in microfluidic channels: criteria to identify the third liquid and validation with protein crystallization.
    Chen DL; Li L; Reyes S; Adamson DN; Ismagilov RF
    Langmuir; 2007 Feb; 23(4):2255-60. PubMed ID: 17279722
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Screening of protein crystallization conditions on a microfluidic chip using nanoliter-size droplets.
    Zheng B; Roach LS; Ismagilov RF
    J Am Chem Soc; 2003 Sep; 125(37):11170-1. PubMed ID: 16220918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-coalescing flows in microfluidics for pulse-shaped delivery of reagents.
    Gökçe O; Castonguay S; Temiz Y; Gervais T; Delamarche E
    Nature; 2019 Oct; 574(7777):228-232. PubMed ID: 31597972
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoliter dispensing method by degassed poly(dimethylsiloxane) microchannels and its application in protein crystallization.
    Zhou X; Lau L; Lam WW; Au SW; Zheng B
    Anal Chem; 2007 Jul; 79(13):4924-30. PubMed ID: 17547370
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoliter-sized liquid dispenser array for multiple biochemical analysis in microfluidic devices.
    Yamada M; Seki M
    Anal Chem; 2004 Feb; 76(4):895-9. PubMed ID: 14961718
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sampling from nanoliter plugs via asymmetrical splitting of segmented flow.
    Nie J; Kennedy RT
    Anal Chem; 2010 Sep; 82(18):7852-6. PubMed ID: 20738106
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic droplet trapping array as nanoliter reactors for gas-liquid chemical reaction.
    Zhang Q; Zeng S; Qin J; Lin B
    Electrophoresis; 2009 Sep; 30(18):3181-8. PubMed ID: 19705356
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microgram-scale testing of reaction conditions in solution using nanoliter plugs in microfluidics with detection by MALDI-MS.
    Hatakeyama T; Chen DL; Ismagilov RF
    J Am Chem Soc; 2006 Mar; 128(8):2518-9. PubMed ID: 16492019
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoliter microfluidic hybrid method for simultaneous screening and optimization validated with crystallization of membrane proteins.
    Li L; Mustafi D; Fu Q; Tereshko V; Chen DL; Tice JD; Ismagilov RF
    Proc Natl Acad Sci U S A; 2006 Dec; 103(51):19243-8. PubMed ID: 17159147
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advances in the Use of Microfluidics to Study Crystallization Fundamentals.
    Candoni N; Grossier R; Lagaize M; Veesler S
    Annu Rev Chem Biomol Eng; 2019 Jun; 10():59-83. PubMed ID: 31018097
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid on-chip multi-step (bio)chemical procedures in continuous flow--manoeuvring particles through co-laminar reagent streams.
    Peyman SA; Iles A; Pamme N
    Chem Commun (Camb); 2008 Mar; (10):1220-2. PubMed ID: 18309423
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient macromolecular crystallization using microfluidics and randomized design of screening reagents.
    May AP; Segelke BW
    Methods Mol Biol; 2008; 426():387-402. PubMed ID: 18542878
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using a multijunction microfluidic device to inject substrate into an array of preformed plugs without cross-contamination: comparing theory and experiments.
    Li L; Boedicker JQ; Ismagilov RF
    Anal Chem; 2007 Apr; 79(7):2756-61. PubMed ID: 17338503
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time-resolved analysis of biological reactions based on heterogeneous assays in liquid plugs of nanoliter volume.
    Rendl M; Brandstetter T; Rühe J
    Anal Chem; 2013 Oct; 85(20):9469-77. PubMed ID: 24083685
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.