These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 15786803)

  • 41. Sensitive detection of polynucleotide kinase using rolling circle amplification-induced chemiluminescence.
    Tang W; Zhu G; Zhang CY
    Chem Commun (Camb); 2014 May; 50(36):4733-5. PubMed ID: 24681834
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Biomolecular response of oxanine in DNA strands to T4 polynucleotide kinase, T4 DNA ligase, and restriction enzymes.
    Pack SP; Doi A; Choi YS; Kodaki T; Makino K
    Biochem Biophys Res Commun; 2010 Jan; 391(1):118-22. PubMed ID: 19900415
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Mechanism of the phosphatase component of Clostridium thermocellum polynucleotide kinase-phosphatase.
    Keppetipola N; Shuman S
    RNA; 2006 Jan; 12(1):73-82. PubMed ID: 16301605
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Probing RNA structure with chemical reagents and enzymes.
    Ziehler WA; Engelke DR
    Curr Protoc Nucleic Acid Chem; 2001 May; Chapter 6():Unit 6.1. PubMed ID: 18428862
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Ferrocene-functionalized SWCNT for electrochemical detection of T4 polynucleotide kinase activity.
    Wang Y; He X; Wang K; Ni X; Su J; Chen Z
    Biosens Bioelectron; 2012 Feb; 32(1):213-8. PubMed ID: 22209074
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The molecular architecture of the mammalian DNA repair enzyme, polynucleotide kinase.
    Bernstein NK; Williams RS; Rakovszky ML; Cui D; Green R; Karimi-Busheri F; Mani RS; Galicia S; Koch CA; Cass CE; Durocher D; Weinfeld M; Glover JN
    Mol Cell; 2005 Mar; 17(5):657-70. PubMed ID: 15749016
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A sensitive detection of T4 polynucleotide kinase activity based on β-cyclodextrin polymer enhanced fluorescence combined with an exonuclease reaction.
    Song C; Yang X; Wang K; Wang Q; Liu J; Huang J; He L; Liu P; Qing Z; Liu W
    Chem Commun (Camb); 2015 Feb; 51(10):1815-8. PubMed ID: 25519768
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Quencher-free hairpin probes for real-time detection of T4 polynucleotide kinase activity.
    Ma C; Liu H; Du J; Chen H; He H; Jin S; Wang K; Wang J
    Anal Biochem; 2016 Feb; 494():1-3. PubMed ID: 26518115
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Joining RNA molecules with T4 DNA ligase.
    Moore MJ
    Methods Mol Biol; 1999; 118():11-9. PubMed ID: 10549511
    [No Abstract]   [Full Text] [Related]  

  • 50. Straightening of bulged RNA by the double-stranded RNA-binding domain from the protein kinase PKR.
    Zheng X; Bevilacqua PC
    Proc Natl Acad Sci U S A; 2000 Dec; 97(26):14162-7. PubMed ID: 11114159
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Application of repair enzymes to improve the quality of degraded DNA templates for PCR amplification].
    Dovgerd AP; Zharkov DO
    Prikl Biokhim Mikrobiol; 2014; 50(3):264-72. PubMed ID: 25757334
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Phosphorylation-induced hybridization chain reaction on beads: an ultrasensitive flow cytometric assay for the detection of T4 polynucleotide kinase activity.
    Zhang Y; Liu C; Sun S; Tang Y; Li Z
    Chem Commun (Camb); 2015 Apr; 51(27):5832-5. PubMed ID: 25683206
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Highly sensitive fluorescence assay of T4 polynucleotide kinase activity and inhibition via enzyme-assisted signal amplification.
    Tao M; Zhang J; Jin Y; Li B
    Anal Biochem; 2014 Nov; 464():63-9. PubMed ID: 25058928
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A label-free cyclic assembly of G-quadruplex nanowires for cascade amplification detection of T4 polynucleotide kinase activity and inhibition.
    Shi Z; Zhang X; Cheng R; Li B; Jin Y
    Analyst; 2015 Sep; 140(17):6124-30. PubMed ID: 26215375
    [TBL] [Abstract][Full Text] [Related]  

  • 55. In vitro assays for studying helicase activities.
    Kim JH; Seo YS
    Methods Mol Biol; 2009; 521():361-79. PubMed ID: 19563117
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Label-free colorimetric assay for T4 polynucleotide kinase/phosphatase activity and its inhibitors based on G-quadruplex/hemin DNAzyme.
    Liu H; Ma C; Wang J; Chen H; Wang K
    Anal Biochem; 2017 Jan; 517():18-21. PubMed ID: 27984013
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Polyacrylamide gel electrophoresis (PAGE) of synthetic nucleic acids.
    Andrus A; Kuimelis RG
    Curr Protoc Nucleic Acid Chem; 2001 May; Chapter 10():Unit 10.4. PubMed ID: 18428823
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Three double-stranded RNA genome segments of bacteriophage phi 6 have homologous terminal sequences.
    Iba H; Watanabe T; Emori Y; Okada Y
    FEBS Lett; 1982 May; 141(1):111-5. PubMed ID: 7084474
    [No Abstract]   [Full Text] [Related]  

  • 59. An amplified fluorescence detection of T4 polynucleotide kinase activity based on coupled exonuclease III reaction and a graphene oxide platform.
    Sun NN; Kong RM; Qu F; Zhang X; Zhang S; You J
    Analyst; 2015 Mar; 140(6):1827-31. PubMed ID: 25672549
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Phased adenine tracts in double-stranded RNA do not induce sequence-directed bending.
    Wang YH; Howard MT; Griffith JD
    Biochemistry; 1991 Jun; 30(22):5443-9. PubMed ID: 2036412
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.