BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 15787218)

  • 1. [Multiple template switches on LINE-directed reverse transcription: the most probable formation mechanism for the double and triple chimeric retroelements in mammals].
    Gogvadze EV; Buzdin AA; Sverdlov ED
    Bioorg Khim; 2005; 31(1):82-9. PubMed ID: 15787218
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tripartite chimeric pseudogene from the genome of rice blast fungus Magnaporthe grisea suggests double template jumps during long interspersed nuclear element (LINE) reverse transcription.
    Gogvadze E; Barbisan C; Lebrun MH; Buzdin A
    BMC Genomics; 2007 Oct; 8():360. PubMed ID: 17922896
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [New mechanism of retrogene formation in mammalian genomes: in vivo recombination during RNA reverse transcription].
    Gogvadze EV; Buzdin AA
    Mol Biol (Mosk); 2005; 39(3):364-73. PubMed ID: 15981565
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The human genome contains many types of chimeric retrogenes generated through in vivo RNA recombination.
    Buzdin A; Gogvadze E; Kovalskaya E; Volchkov P; Ustyugova S; Illarionova A; Fushan A; Vinogradova T; Sverdlov E
    Nucleic Acids Res; 2003 Aug; 31(15):4385-90. PubMed ID: 12888497
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-wide experimental identification and functional analysis of human specific retroelements.
    Buzdin A; Vinogradova T; Lebedev Y; Sverdlov E
    Cytogenet Genome Res; 2005; 110(1-4):468-74. PubMed ID: 16093700
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chimeric retrogenes suggest a role for the nucleolus in LINE amplification.
    Buzdin A; Gogvadze E; Lebrun MH
    FEBS Lett; 2007 Jun; 581(16):2877-82. PubMed ID: 17560999
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA polymerization by the reverse transcriptase of the human L1 retrotransposon on its own template in vitro.
    Piskareva O; Schmatchenko V
    FEBS Lett; 2006 Jan; 580(2):661-8. PubMed ID: 16412437
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Telomerase and retrotransposons: reverse transcriptases that shaped genomes.
    Belfort M; Curcio MJ; Lue NF
    Proc Natl Acad Sci U S A; 2011 Dec; 108(51):20304-10. PubMed ID: 22187457
    [No Abstract]   [Full Text] [Related]  

  • 9. Mammalian retroelements.
    Deininger PL; Batzer MA
    Genome Res; 2002 Oct; 12(10):1455-65. PubMed ID: 12368238
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Many human L1 elements are capable of retrotransposition.
    Sassaman DM; Dombroski BA; Moran JV; Kimberland ML; Naas TP; DeBerardinis RJ; Gabriel A; Swergold GD; Kazazian HH
    Nat Genet; 1997 May; 16(1):37-43. PubMed ID: 9140393
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reverse transcription of retroviruses and LTR retrotransposons.
    Wilhelm M; Wilhelm FX
    Cell Mol Life Sci; 2001 Aug; 58(9):1246-62. PubMed ID: 11577982
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DGR mutagenic transposition occurs via hypermutagenic reverse transcription primed by nicked template RNA.
    Naorem SS; Han J; Wang S; Lee WR; Heng X; Miller JF; Guo H
    Proc Natl Acad Sci U S A; 2017 Nov; 114(47):E10187-E10195. PubMed ID: 29109248
    [TBL] [Abstract][Full Text] [Related]  

  • 13. U6 snRNA Pseudogenes: Markers of Retrotransposition Dynamics in Mammals.
    Doucet AJ; Droc G; Siol O; Audoux J; Gilbert N
    Mol Biol Evol; 2015 Jul; 32(7):1815-32. PubMed ID: 25761766
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Retroelement-derived RNA and its role in the brain.
    Evans TA; Erwin JA
    Semin Cell Dev Biol; 2021 Jun; 114():68-80. PubMed ID: 33229216
    [TBL] [Abstract][Full Text] [Related]  

  • 15. HOPPSIGEN: a database of human and mouse processed pseudogenes.
    Khelifi A; Duret L; Mouchiroud D
    Nucleic Acids Res; 2005 Jan; 33(Database issue):D59-66. PubMed ID: 15608268
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Template switching can create complex LTR retrotransposon insertions in Triticeae genomes.
    Sabot F; Schulman AH
    BMC Genomics; 2007 Jul; 8():247. PubMed ID: 17650302
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The mammalian genome shaping activity of reverse transcriptase.
    Nouvel P
    Genetica; 1994; 93(1-3):191-201. PubMed ID: 7529206
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-cognate template usage and alternative priming by a group II intron-encoded reverse transcriptase.
    Morozova T; Seo W; Zimmerly S
    J Mol Biol; 2002 Feb; 315(5):951-63. PubMed ID: 11827468
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural RNA components supervise the sequential DNA cleavage in R2 retrotransposon.
    Deng P; Tan SQ; Yang QY; Fu L; Wu Y; Zhu HZ; Sun L; Bao Z; Lin Y; Zhang QC; Wang H; Wang J; Liu JG
    Cell; 2023 Jun; 186(13):2865-2879.e20. PubMed ID: 37301196
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-wide characterization of human L1 antisense promoter-driven transcripts.
    Criscione SW; Theodosakis N; Micevic G; Cornish TC; Burns KH; Neretti N; Rodić N
    BMC Genomics; 2016 Jun; 17():463. PubMed ID: 27301971
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.