These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 15787362)

  • 1. Heteroepitaxial nucleation and oriented growth of manganese oxide islands on carbonate minerals under aqueous conditions.
    Jun YS; Kendall TA; Martin ST; Friend CM; Vlassak JJ
    Environ Sci Technol; 2005 Mar; 39(5):1239-49. PubMed ID: 15787362
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cobalt alters the growth of a manganese oxide film.
    Jun YS; Martin ST
    Langmuir; 2006 Feb; 22(5):2235-40. PubMed ID: 16489812
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microscopic observations of reductive manganite dissolution under oxic conditions.
    Jun YS; Martin ST
    Environ Sci Technol; 2003 Jun; 37(11):2363-70. PubMed ID: 12831018
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced dissolution of manganese oxide in ice compared to aqueous phase under illuminated and dark conditions.
    Kim K; Yoon HI; Choi W
    Environ Sci Technol; 2012 Dec; 46(24):13160-6. PubMed ID: 23153016
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heterogeneous Nucleation and Growth of Nanoparticles at Environmental Interfaces.
    Jun YS; Kim D; Neil CW
    Acc Chem Res; 2016 Sep; 49(9):1681-90. PubMed ID: 27513685
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ionic Strength-Controlled Mn (Hydr)oxide Nanoparticle Nucleation on Quartz: Effect of Aqueous Mn(OH)2.
    Jung H; Jun YS
    Environ Sci Technol; 2016 Jan; 50(1):105-13. PubMed ID: 26588858
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PbO2(s, plattnerite) reductive dissolution by aqueous manganous and ferrous ions.
    Shi Z; Stone AT
    Environ Sci Technol; 2009 May; 43(10):3596-603. PubMed ID: 19544860
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbonate complexation of Mn2+ in the aqueous phase: redox behavior and ligand binding modes by electrochemistry and EPR spectroscopy.
    Dasgupta J; Tyryshkin AM; Kozlov YN; Klimov VV; Dismukes GC
    J Phys Chem B; 2006 Mar; 110(10):5099-111. PubMed ID: 16526753
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real-Time Manganese Phase Dynamics during Biological and Abiotic Manganese Oxide Reduction.
    Johnson JE; Savalia P; Davis R; Kocar BD; Webb SM; Nealson KH; Fischer WW
    Environ Sci Technol; 2016 Apr; 50(8):4248-58. PubMed ID: 27018915
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fungal oxidative dissolution of the Mn(II)-bearing mineral rhodochrosite and the role of metabolites in manganese oxide formation.
    Tang Y; Zeiner CA; Santelli CM; Hansel CM
    Environ Microbiol; 2013 Apr; 15(4):1063-77. PubMed ID: 23157705
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface chemistry and dissolution kinetics of divalent metal carbonates.
    Pokrovsky OS; Schott J
    Environ Sci Technol; 2002 Feb; 36(3):426-32. PubMed ID: 11871558
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction of inorganic arsenic with biogenic manganese oxide produced by a Mn-oxidizing fungus, strain KR21-2.
    Tani Y; Miyata N; Ohashi M; Ohnuki T; Seyama H; Iwahori K; Soma M
    Environ Sci Technol; 2004 Dec; 38(24):6618-24. PubMed ID: 15669320
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantifying the Coupled Kinetic Reactions of Metals/Metalloids on Iron and Manganese Oxides.
    Shi Z
    Bull Environ Contam Toxicol; 2019 Dec; 103(6):763-765. PubMed ID: 31628499
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ spectroscopic and solution analyses of the reductive dissolution of MnO2 by Fe(II).
    Villinski JE; O'Day PA; Corley TL; Conklin MH
    Environ Sci Technol; 2001 Mar; 35(6):1157-63. PubMed ID: 11347928
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reactivity and transformation of antibacterial N-oxides in the presence of manganese oxide.
    Zhang H; Huang CH
    Environ Sci Technol; 2005 Jan; 39(2):593-601. PubMed ID: 15707060
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanostructured manganese oxides as highly active water oxidation catalysts: a boost from manganese precursor chemistry.
    Menezes PW; Indra A; Littlewood P; Schwarze M; Göbel C; Schomäcker R; Driess M
    ChemSusChem; 2014 Aug; 7(8):2202-11. PubMed ID: 25044528
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photochemical water oxidation by crystalline polymorphs of manganese oxides: structural requirements for catalysis.
    Robinson DM; Go YB; Mui M; Gardner G; Zhang Z; Mastrogiovanni D; Garfunkel E; Li J; Greenblatt M; Dismukes GC
    J Am Chem Soc; 2013 Mar; 135(9):3494-501. PubMed ID: 23391134
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A critical review of the reactivity of manganese oxides with organic contaminants.
    Remucal CK; Ginder-Vogel M
    Environ Sci Process Impacts; 2014 May; 16(6):1247-66. PubMed ID: 24791271
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of oxygenation on chromium redox reactions with manganese sulfide (MnS(s)).
    Wadhawan AR; Livi KJ; Stone AT; Bouwer EJ
    Environ Sci Technol; 2015 Mar; 49(6):3523-31. PubMed ID: 25688449
    [TBL] [Abstract][Full Text] [Related]  

  • 20. (54)Mn Radiotracers Demonstrate Continuous Dissolution and Reprecipitation of Vernadite (δ-MnO2) during Interaction with Aqueous Mn(II).
    Elzinga EJ
    Environ Sci Technol; 2016 Aug; 50(16):8670-7. PubMed ID: 27403960
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.