BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 15787367)

  • 1. Linker-based bio-compatible microemulsions.
    Acosta EJ; Nguyen T; Witthayapanyanon A; Harwell JH; Sabatini DA
    Environ Sci Technol; 2005 Mar; 39(5):1275-82. PubMed ID: 15787367
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formulating chlorinated hydrocarbon microemulsions using linker molecules.
    Acosta E; Tran S; Uchiyama H; Sabatini DA; Harwell JH
    Environ Sci Technol; 2002 Nov; 36(21):4618-24. PubMed ID: 12433173
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biocompatible lecithin-based microemulsions with rhamnolipid and sophorolipid biosurfactants: formulation and potential applications.
    Nguyen TT; Edelen A; Neighbors B; Sabatini DA
    J Colloid Interface Sci; 2010 Aug; 348(2):498-504. PubMed ID: 20471022
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lecithin-linker formulations for self-emulsifying delivery of nutraceuticals.
    Chu J; Cheng YL; Rao AV; Nouraei M; Zarate-Muñoz S; Acosta EJ
    Int J Pharm; 2014 Aug; 471(1-2):92-102. PubMed ID: 24810240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microemulsions of triglyceride-based oils: The effect of co-oil and salinity on phase diagrams.
    Komesvarakul N; Sanders MD; Szekeres E; Acosta EJ; Faller JF; Mentlik T; Fisher LB; Nicoll G; Sabatini DA; Scamehorn JF
    J Cosmet Sci; 2006; 57(4):309-25. PubMed ID: 16957810
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting solubilisation features of ternary phase diagrams of fully dilutable lecithin linker microemulsions.
    Nouraei M; Acosta EJ
    J Colloid Interface Sci; 2017 Jun; 495():178-190. PubMed ID: 28199856
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Linker-based lecithin microemulsions for transdermal delivery of lidocaine.
    Yuan JS; Ansari M; Samaan M; Acosta EJ
    Int J Pharm; 2008 Feb; 349(1-2):130-43. PubMed ID: 17904775
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oil-in-water lecithin-based microemulsions as a potential delivery system for amphotericin B.
    Pestana KC; Formariz TP; Franzini CM; Sarmento VH; Chiavacci LA; Scarpa MV; Egito ES; Oliveira AG
    Colloids Surf B Biointerfaces; 2008 Oct; 66(2):253-9. PubMed ID: 18676122
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amphotericin B in oil-water lecithin-based microemulsions: formulation and toxicity evaluation.
    Brime B; Moreno MA; Frutos G; Ballesteros MP; Frutos P
    J Pharm Sci; 2002 Apr; 91(4):1178-85. PubMed ID: 11948556
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of surfactant/cosurfactant synergism impact on ibuprofen solubilization capacity and drug release characteristics of nonionic microemulsions.
    Djekic L; Primorac M; Filipic S; Agbaba D
    Int J Pharm; 2012 Aug; 433(1-2):25-33. PubMed ID: 22579578
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of non-ionic surfactants and plant oils on the solubilization of organochlorine pesticides by oil-in-water microemulsions.
    Zheng G; Zhao Z; Wong JW
    Environ Technol; 2011; 32(3-4):269-79. PubMed ID: 21780695
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of cosurfactants and oils on the formation of pharmaceutical microemulsions based on PEG-8 caprylic/capric glycerides.
    Djekic L; Primorac M
    Int J Pharm; 2008 Mar; 352(1-2):231-9. PubMed ID: 18068919
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pseudo-ternary phase diagrams of lecithin-based microemulsions: influence of monoalkylphosphates.
    Trotta M; Ugazio E; Gasco MR
    J Pharm Pharmacol; 1995 Jun; 47(6):451-4. PubMed ID: 7674125
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improvement of lindane removal by Streptomyces sp. M7 by using stable microemulsions.
    Saez JM; Casillas García V; Benimeli CS
    Ecotoxicol Environ Saf; 2017 Oct; 144():351-359. PubMed ID: 28647602
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling solubilization of oil mixtures in anionic microemulsions II. Mixtures of polar and non-polar oils.
    Szekeres E; Acosta E; Sabatini DA; Harwell JH
    J Colloid Interface Sci; 2006 Feb; 294(1):222-33. PubMed ID: 16081087
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation of microemulsions for using as cosmeceutical delivery systems: effects of various components and characteristics of some formulations.
    Wuttikul K; Boonme P
    Drug Deliv Transl Res; 2016 Jun; 6(3):254-62. PubMed ID: 26813671
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of the phase behaviour of systems containing lecithin and 2-acyl lysolecithin derivatives.
    Trotta M; Gallarate M; Pattarino F; Carlotti ME
    Int J Pharm; 1999 Nov; 190(1):83-9. PubMed ID: 10528100
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lecithin-based oil-in-water microemulsions for parenteral use: pseudoternary phase diagrams, characterization and toxicity studies.
    Moreno MA; Ballesteros MP; Frutos P
    J Pharm Sci; 2003 Jul; 92(7):1428-37. PubMed ID: 12820147
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biocompatible microemulsions based on limonene: formulation, structure, and applications.
    Papadimitriou V; Pispas S; Syriou S; Pournara A; Zoumpanioti M; Sotiroudis TG; Xenakis A
    Langmuir; 2008 Apr; 24(7):3380-6. PubMed ID: 18303927
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nano-emulsion formulation using spontaneous emulsification: solvent, oil and surfactant optimisation.
    Bouchemal K; Briançon S; Perrier E; Fessi H
    Int J Pharm; 2004 Aug; 280(1-2):241-51. PubMed ID: 15265563
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.