BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 15787367)

  • 21. Ionic liquid based microemulsion with pharmaceutically accepted components: Formulation and potential applications.
    Moniruzzaman M; Kamiya N; Goto M
    J Colloid Interface Sci; 2010 Dec; 352(1):136-42. PubMed ID: 20825949
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of surfactant concentration on transdermal lidocaine delivery with linker microemulsions.
    Yuan JS; Yip A; Nguyen N; Chu J; Wen XY; Acosta EJ
    Int J Pharm; 2010 Jun; 392(1-2):274-84. PubMed ID: 20363304
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Match of Solubility Parameters Between Oil and Surfactants as a Rational Approach for the Formulation of Microemulsion with a High Dispersed Volume of Copaiba Oil and Low Surfactant Content.
    Xavier-Junior FH; Huang N; Vachon JJ; Rehder VL; do Egito ES; Vauthier C
    Pharm Res; 2016 Dec; 33(12):3031-3043. PubMed ID: 27599989
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evaluation of biosurfactants for crude oil contaminated soil washing.
    Urum K; Pekdemir T
    Chemosphere; 2004 Dec; 57(9):1139-50. PubMed ID: 15504473
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phospholipids embedded fully dilutable liquid nanostructures. Part 1: compositions and solubilization capacity.
    Amsalem O; Yuli-Amar I; Aserin A; Garti N
    Colloids Surf B Biointerfaces; 2009 Oct; 73(1):15-22. PubMed ID: 19473821
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High drug loading self-microemulsifying/micelle formulation: design by high-throughput formulation screening system and in vivo evaluation.
    Sakai K; Obata K; Yoshikawa M; Takano R; Shibata M; Maeda H; Mizutani A; Terada K
    Drug Dev Ind Pharm; 2012 Oct; 38(10):1254-61. PubMed ID: 22339057
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Light scattering investigations on dilute nonionic oil-in-water microemulsions.
    Warisnoicharoen W; Lansley AB; Lawrence MJ
    AAPS PharmSci; 2000; 2(2):E12. PubMed ID: 11741228
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structure of biodiesel based bicontinuous microemulsions for environmentally compatible decontamination: A small angle neutron scattering and freeze fracture electron microscopy study.
    Wellert S; Karg M; Imhof H; Steppin A; Altmann HJ; Dolle M; Richardt A; Tiersch B; Koetz J; Lapp A; Hellweg T
    J Colloid Interface Sci; 2008 Sep; 325(1):250-8. PubMed ID: 18571191
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Oral microemulsions of paclitaxel: in situ and pharmacokinetic studies.
    Nornoo AO; Zheng H; Lopes LB; Johnson-Restrepo B; Kannan K; Reed R
    Eur J Pharm Biopharm; 2009 Feb; 71(2):310-7. PubMed ID: 18793723
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of oil on the level of solubilization of testosterone propionate into nonionic oil-in-water microemulsions.
    Malcolmson C; Satra C; Kantaria S; Sidhu A; Lawrence MJ
    J Pharm Sci; 1998 Jan; 87(1):109-16. PubMed ID: 9452978
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Preparation, characterization, sterility validation, and in vitro cell toxicity studies of microemulsions possessing potential parenteral applications.
    Nesamony J; Zachar CL; Jung R; Williams FE; Nauli S
    Drug Dev Ind Pharm; 2013 Feb; 39(2):240-51. PubMed ID: 22480266
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Highly concentrated emulsified microemulsions as solvent-free plant protection formulations.
    Engelskirchen S; Maurer R; Levy T; Berghaus R; Auweter H; Glatter O
    J Colloid Interface Sci; 2012 Dec; 388(1):151-61. PubMed ID: 23010322
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A step toward the development of high-temperature stable ionic liquid-in-oil microemulsions containing double-chain anionic surface active ionic liquid.
    Rao VG; Banerjee C; Ghosh S; Mandal S; Kuchlyan J; Sarkar N
    J Phys Chem B; 2013 Jun; 117(24):7472-80. PubMed ID: 23697660
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Natural microemulsions: formulation design and skin interaction.
    Schwarz JC; Klang V; Hoppel M; Mahrhauser D; Valenta C
    Eur J Pharm Biopharm; 2012 Aug; 81(3):557-62. PubMed ID: 22561183
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Lecithin inverse microemulsions for the pulmonary delivery of polar compounds utilizing dimethylether and propane as propellants.
    Sommerville ML; Cain JB; Johnson CS; Hickey AJ
    Pharm Dev Technol; 2000; 5(2):219-30. PubMed ID: 10810752
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Particle size analysis of concentrated phospholipid microemulsions II. Photon correlation spectroscopy.
    Aboofazeli R; Barlow D; Lawrence MJ
    AAPS PharmSci; 2000; 2(3):E19. PubMed ID: 11741235
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Capillary flooding of wood with microemulsions from Winsor I systems.
    Carrillo CA; Saloni D; Lucia LA; Hubbe MA; Rojas OJ
    J Colloid Interface Sci; 2012 Sep; 381(1):171-9. PubMed ID: 22721790
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A critical appraisal of microemulsions for drug delivery: part I.
    Sapra B; Thatai P; Bhandari S; Sood J; Jindal M; Tiwary A
    Ther Deliv; 2013 Dec; 4(12):1547-64. PubMed ID: 24304251
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biocompatible microemulsions of dicephalic aldonamide-type surfactants: formulation, structure and temperature influence.
    Wilk KA; ZieliƄska K; Hamerska-Dudra A; Jezierski A
    J Colloid Interface Sci; 2009 Jun; 334(1):87-95. PubMed ID: 19383561
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Application of microemulsions in dermal and transdermal drug delivery.
    Santos P; Watkinson AC; Hadgraft J; Lane ME
    Skin Pharmacol Physiol; 2008; 21(5):246-59. PubMed ID: 18562799
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.