These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 15787377)

  • 1. Engineered polymeric nanoparticles for bioremediation of hydrophobic contaminants.
    Tungittiplakorn W; Cohen C; Lion LW
    Environ Sci Technol; 2005 Mar; 39(5):1354-8. PubMed ID: 15787377
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineered polymeric nanoparticles for soil remediation.
    Tungittiplakorn W; Lion LW; Cohen C; Kim JY
    Environ Sci Technol; 2004 Mar; 38(5):1605-10. PubMed ID: 15046367
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mass transfer model of nanoparticle-facilitated contaminant transport in saturated porous media.
    Johari WL; Diamessis PJ; Lion LW
    Water Res; 2010 Feb; 44(4):1028-37. PubMed ID: 19406449
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surfactant-enhanced remediation of organic contaminated soil and water.
    Paria S
    Adv Colloid Interface Sci; 2008 Apr; 138(1):24-58. PubMed ID: 18154747
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biosurfactant- and biodegradation-enhanced partitioning of polycyclic aromatic hydrocarbons from nonaqueous-phase liquids.
    Garcia-Junco M; Gomez-Lahoz C; Niqui-Arroyo JL; Ortega-Calvo JJ
    Environ Sci Technol; 2003 Jul; 37(13):2988-96. PubMed ID: 12875405
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effectiveness of in situ air sparging for removing NAPL gasoline from a sandy aquifer near Perth, Western Australia.
    Johnston CD; Rayner JL; Briegel D
    J Contam Hydrol; 2002 Nov; 59(1-2):87-111. PubMed ID: 12683641
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioavailability and biodegradation kinetics protocol for organic pollutant compounds to achieve environmentally acceptable endpoints during bioremediation.
    Tabak HH; Govind R
    Ann N Y Acad Sci; 1997 Nov; 829():36-61. PubMed ID: 9472313
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of amphiphilic polyurethane nanoparticles on sorption-desorption of phenanthrene in aquifer material.
    Kim JY; Shim SB; Shim JK
    J Hazard Mater; 2003 Mar; 98(1-3):145-60. PubMed ID: 12628783
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoparticle-supported lipid bilayers as an in situ remediation strategy for hydrophobic organic contaminants in soils.
    Wang H; Kim B; Wunder SL
    Environ Sci Technol; 2015 Jan; 49(1):529-36. PubMed ID: 25454259
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Degradation of soil-sorbed trichloroethylene by stabilized zero valent iron nanoparticles: effects of sorption, surfactants, and natural organic matter.
    Zhang M; He F; Zhao D; Hao X
    Water Res; 2011 Mar; 45(7):2401-14. PubMed ID: 21376362
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparing the desorption and biodegradation of low concentrations of phenanthrene sorbed to activated carbon, biochar and compost.
    Marchal G; Smith KE; Rein A; Winding A; Trapp S; Karlson UG
    Chemosphere; 2013 Feb; 90(6):1767-78. PubMed ID: 22921652
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of amphiphilic polyurethane nanoparticles to nonionic surfactants for flushing phenanthrene from soil.
    Kim JY; Shim SB; Shim JK
    J Hazard Mater; 2004 Dec; 116(3):205-12. PubMed ID: 15601613
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Remediation of PAH contaminated soils: application of a solid-liquid two-phase partitioning bioreactor.
    Rehmann L; Prpich GP; Daugulis AJ
    Chemosphere; 2008 Oct; 73(5):798-804. PubMed ID: 18640698
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Removal of non-aqueous phase liquids (NAPLs) from TPH-saturated sandy aquifer sediments using in situ air sparging combined with soil vapor extraction.
    Lee JH; Woo HJ; Jeong KS
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2018; 53(14):1253-1266. PubMed ID: 30623720
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective solubilization of polycyclic aromatic hydrocarbons from multicomponent nonaqueous-phase liquids into nonionic surfactant micelles.
    Bernardez LA; Ghoshal S
    Environ Sci Technol; 2004 Nov; 38(22):5878-87. PubMed ID: 15573585
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of surfactants and slurrying to enhance the biodegradation in soil of compounds initially dissolved in nonaqueous-phase liquids.
    Fu MH; Alexander M
    Appl Microbiol Biotechnol; 1995 Jul; 43(3):551-8. PubMed ID: 7632403
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biotreatment of PAH-contaminated soils/sediments.
    Bouwer EJ; Zhang W; Wilson LP; Durant ND
    Ann N Y Acad Sci; 1997 Nov; 829():103-17. PubMed ID: 9472316
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mycelium-Enhanced Bacterial Degradation of Organic Pollutants under Bioavailability Restrictions.
    Sungthong R; Tauler M; Grifoll M; Ortega-Calvo JJ
    Environ Sci Technol; 2017 Oct; 51(20):11935-11942. PubMed ID: 28921965
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Removal of organic contaminants in bioretention medium amended with activated carbon from sewage sludge.
    Björklund K; Li L
    Environ Sci Pollut Res Int; 2017 Aug; 24(23):19167-19180. PubMed ID: 28664490
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of a nonaqueous phase liquid (NAPL) on biodegradation of phenanthrene.
    Sandrin TR; Kight WB; Maier WJ; Maier RM
    Biodegradation; 2006 Oct; 17(5):423-35. PubMed ID: 16477359
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.