These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 15787378)

  • 1. Fullerol-sensitized production of reactive oxygen species in aqueous solution.
    Pickering KD; Wiesner MR
    Environ Sci Technol; 2005 Mar; 39(5):1359-65. PubMed ID: 15787378
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of the oxidation of organic compounds by aqueous suspensions of photosensitized hydroxylated-C60 fullerene aggregates.
    Chae SR; Hotze EM; Wiesner MR
    Environ Sci Technol; 2009 Aug; 43(16):6208-13. PubMed ID: 19746715
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inactivation of bacteriophages via photosensitization of fullerol nanoparticles.
    Badireddy AR; Hotze EM; Chellam S; Alvarez P; Wiesner MR
    Environ Sci Technol; 2007 Sep; 41(18):6627-32. PubMed ID: 17948818
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduction of hydroxylated fullerene (fullerol) in water by zinc: reaction and hemiketal product characterization.
    Wu J; Alemany LB; Li W; Petrie L; Welker C; Fortner JD
    Environ Sci Technol; 2014 Jul; 48(13):7384-92. PubMed ID: 24892381
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photochemical production of reactive oxygen species by C60 in the aqueous phase during UV irradiation.
    Lee J; Fortner JD; Hughes JB; Kim JH
    Environ Sci Technol; 2007 Apr; 41(7):2529-35. PubMed ID: 17438811
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms of bacteriophage inactivation via singlet oxygen generation in UV illuminated fullerol suspensions.
    Hotze EM; Badireddy AR; Chellam S; Wiesner MR
    Environ Sci Technol; 2009 Sep; 43(17):6639-45. PubMed ID: 19764229
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms of photochemistry and reactive oxygen production by fullerene suspensions in water.
    Hotze EM; Labille J; Alvarez P; Wiesner MR
    Environ Sci Technol; 2008 Jun; 42(11):4175-80. PubMed ID: 18589984
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative photoactivity and antibacterial properties of C60 fullerenes and titanium dioxide nanoparticles.
    Brunet L; Lyon DY; Hotze EM; Alvarez PJ; Wiesner MR
    Environ Sci Technol; 2009 Jun; 43(12):4355-60. PubMed ID: 19603646
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of carbon nanomaterials fullerene C₆₀ and fullerol C₆₀(OH)₁₈₋₂₂ on gills of fish Cyprinus carpio (Cyprinidae) exposed to ultraviolet radiation.
    Socoowski Britto R; Garcia ML; Martins da Rocha A; Flores JA; Pinheiro MV; Monserrat JM; Ferreira JL
    Aquat Toxicol; 2012 Jun; 114-115():80-7. PubMed ID: 22417764
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distribution of fullerene nanomaterials between water and model biological membranes.
    Hou WC; Moghadam BY; Westerhoff P; Posner JD
    Langmuir; 2011 Oct; 27(19):11899-905. PubMed ID: 21854052
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photochemical and antimicrobial properties of novel C60 derivatives in aqueous systems.
    Lee I; Mackeyev Y; Cho M; Li D; Kim JH; Wilson LJ; Alvarez PJ
    Environ Sci Technol; 2009 Sep; 43(17):6604-10. PubMed ID: 19764224
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Production and consumption of reactive oxygen species by fullerenes.
    Kong L; Zepp RG
    Environ Toxicol Chem; 2012 Jan; 31(1):136-43. PubMed ID: 21994164
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visible Light Sensitized Production of Hydroxyl Radicals Using Fullerol as an Electron-Transfer Mediator.
    Lim J; Kim H; Alvarez PJ; Lee J; Choi W
    Environ Sci Technol; 2016 Oct; 50(19):10545-10553. PubMed ID: 27588691
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photo-induced reactive oxygen species generation by different water-soluble fullerenes (C) and their cytotoxicity in human keratinocytes.
    Zhao B; Bilski PJ; He YY; Feng L; Chignell CF
    Photochem Photobiol; 2008; 84(5):1215-23. PubMed ID: 18399919
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Singlet oxygen generation from Li⁺@C⁺₆₀ nano-aggregates dispersed by laser irradiation in aqueous solution.
    Ohkubo K; Kohno N; Yamada Y; Fukuzumi S
    Chem Commun (Camb); 2015 May; 51(38):8082-5. PubMed ID: 25869351
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antioxidative fullerol promotes osteogenesis of human adipose-derived stem cells.
    Yang X; Li CJ; Wan Y; Smith P; Shang G; Cui Q
    Int J Nanomedicine; 2014; 9():4023-31. PubMed ID: 25187705
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Light-initiated transformations of fullerenol in aqueous media.
    Kong L; Tedrow O; Chan YF; Zepp RG
    Environ Sci Technol; 2009 Dec; 43(24):9155-60. PubMed ID: 20000505
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transformation of aggregated C60 in the aqueous phase by UV irradiation.
    Lee J; Cho M; Fortner JD; Hughes JB; Kim JH
    Environ Sci Technol; 2009 Jul; 43(13):4878-83. PubMed ID: 19673279
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of C60 photoreactivity in water: fate of triplet state and radical anion and production of reactive oxygen species.
    Lee J; Yamakoshi Y; Hughes JB; Kim JH
    Environ Sci Technol; 2008 May; 42(9):3459-64. PubMed ID: 18522134
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of proteins with fullerol by a resonance light scattering technique.
    Zhao GC; Zhang P; Wei XW; Yang ZS
    Anal Biochem; 2004 Nov; 334(2):297-302. PubMed ID: 15494137
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.