BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 15787577)

  • 1. Facile synthesis of oligophenylene-substituted calix[4]arenes and their enhanced binding properties.
    Wong MS; Xia PF; Zhang XL; Lo PK; Cheng YK; Yeung KT; Guo X; Shuang S
    J Org Chem; 2005 Apr; 70(7):2816-9. PubMed ID: 15787577
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of oligophenylene-substituted calix[4]crown-4s and their silver(I) ion-induced nanocones formation.
    Wong MS; Xia PF; Lo PK; Sun XH; Wong WY; Shuang S
    J Org Chem; 2006 Feb; 71(3):940-6. PubMed ID: 16438505
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Convenient direct synthesis of bisformylated calix[4]arenes via ipso substitution.
    Chawla HM; Pant N; Srivastava B; Upreti S
    Org Lett; 2006 May; 8(11):2237-40. PubMed ID: 16706495
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis and conformational study of the first triply bridged calix[6]azatubes.
    Le Gac S; Zeng X; Reinaud O; Jabin I
    J Org Chem; 2005 Feb; 70(4):1204-10. PubMed ID: 15704952
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and resolution of a multifunctional inherently chiral calix[4]arene with an ABCD substitution pattern at the wide rim: the effect of a multifunctional structure in the organocatalyst on enantioselectivity in asymmetric reactions.
    Shirakawa S; Kimura T; Murata S; Shimizu S
    J Org Chem; 2009 Feb; 74(3):1288-96. PubMed ID: 19099418
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phenyl-calix[4]arene-based fluorescent sensors: cooperative binding for carboxylates.
    Sun XH; Li W; Xia PF; Luo HB; Wei Y; Wong MS; Cheng YK; Shuang S
    J Org Chem; 2007 Mar; 72(7):2419-26. PubMed ID: 17343417
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis and crystal structure of uranium(IV) complexes with calix[n]arenes (n = 4, 6 and 8): mononuclear, polynuclear and 1D polymeric species.
    Salmon L; Thuéry P; Ephritikhine M
    Dalton Trans; 2006 Aug; (30):3629-37. PubMed ID: 16865174
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energy and geometry of cooperative hydrogen bonds in p-substituted calix[n]- and thiacalix[n]arenes: a quantum-chemical approach.
    Novikov AN; Shapiro YE
    J Phys Chem A; 2012 Jan; 116(1):546-59. PubMed ID: 22129034
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calix[4]quinones derived from double calix[4]arenes: synthesis, complexation, and electrochemical properties toward alkali metal ions.
    Kerdpaiboon N; Tomapatanaget B; Chailapakul O; Tuntulani T
    J Org Chem; 2005 Jun; 70(12):4797-804. PubMed ID: 15932320
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and fluorescence enhancement of oligophenylene-substituted calix[4]arene assemblies.
    Wong MS; Zhang XL; Chen DZ; Cheung WH
    Chem Commun (Camb); 2003 Jan; (1):138-9. PubMed ID: 12611004
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonlinear optical properties in calix[n]arenes: orientation effects of monomers.
    Datta A; Pati SK
    Chemistry; 2005 Aug; 11(17):4961-9. PubMed ID: 15973743
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optically pure calix[6]tris-ammoniums: syntheses and host-guest properties toward neutral guests.
    Darbost U; Zeng X; Giorgi M; Jabin I
    J Org Chem; 2005 Dec; 70(25):10552-60. PubMed ID: 16323870
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of bismuth and antimony complexes of the "larger" calix[n]arenes (n=6-8); from mononuclear to tetranuclear complexes.
    Mendoza-Espinosa D; Rheingold AL; Hanna TA
    Dalton Trans; 2009 Jul; (26):5226-38. PubMed ID: 19562184
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of mono-, di- and tetra-alkyne functionalized calix[4]arenes: reactions of these multipodal ligands with dicobalt octacarbonyl to give complexes which contain up to eight cobalt atoms.
    Chetcuti MJ; Devoille AM; Othman AB; Souane R; Thuéry P; Vicens J
    Dalton Trans; 2009 Apr; (16):2999-3008. PubMed ID: 19352528
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and capsule formation of upper rim substituted tetra-acrylamido calix[4]arenes.
    Kuhnert N; Le-Gresley A
    Org Biomol Chem; 2005 Jun; 3(11):2175-82. PubMed ID: 15917907
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calix[4]azacrown and 4-aminophthalimide-appended calix[4]azacrown: synthesis, structure, complexation and fluorescence signaling behaviour.
    Banthia S; Samanta A
    Org Biomol Chem; 2005 Apr; 3(8):1428-34. PubMed ID: 15827638
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of huge macrocycles using two calix[4]arenes as templates.
    Cao Y; Wang L; Bolte M; Vysotsky MO; Böhmer V
    Chem Commun (Camb); 2005 Jul; (25):3132-4. PubMed ID: 15968348
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intramolecular direct arylation in an A,C-functionalized calix[4]arene.
    Barton OG; Neumann B; Stammler HG; Mattay J
    Org Biomol Chem; 2008 Jan; 6(1):104-11. PubMed ID: 18075654
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis and structures of an unusual germanium(II) calix[4]arene complex and the first germanium(II) calix[8]arene complex and their reactivity with diiron nonacarbonyl.
    Wetherby AE; Goeller LR; DiPasquale AG; Rheingold AL; Weinert CS
    Inorg Chem; 2007 Sep; 46(18):7579-86. PubMed ID: 17691771
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Supramolecular structures formed by calix[8]arene derivatives.
    Podoprygorina G; Zhang J; Brusko V; Bolte M; Janshoff A; Böhmer V
    Org Lett; 2003 Dec; 5(26):5071-4. PubMed ID: 14682767
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.