These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 15787612)

  • 1. The molecular biology of appressorium turgor generation by the rice blast fungus Magnaporthe grisea.
    Wang ZY; Jenkinson JM; Holcombe LJ; Soanes DM; Veneault-Fourrey C; Bhambra GK; Talbot NJ
    Biochem Soc Trans; 2005 Apr; 33(Pt 2):384-8. PubMed ID: 15787612
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mstu1, an APSES transcription factor, is required for appressorium-mediated infection in Magnaporthe grisea.
    Nishimura M; Fukada J; Moriwaki A; Fujikawa T; Ohashi M; Hibi T; Hayashi N
    Biosci Biotechnol Biochem; 2009 Aug; 73(8):1779-86. PubMed ID: 19661696
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MAP kinase and protein kinase A-dependent mobilization of triacylglycerol and glycogen during appressorium turgor generation by Magnaporthe grisea.
    Thines E; Weber RW; Talbot NJ
    Plant Cell; 2000 Sep; 12(9):1703-18. PubMed ID: 11006342
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of glycerol in the pathogenic lifestyle of the rice blast fungus Magnaporthe oryzae.
    Foster AJ; Ryder LS; Kershaw MJ; Talbot NJ
    Environ Microbiol; 2017 Mar; 19(3):1008-1016. PubMed ID: 28165657
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional analysis of lipid metabolism in Magnaporthe grisea reveals a requirement for peroxisomal fatty acid beta-oxidation during appressorium-mediated plant infection.
    Wang ZY; Soanes DM; Kershaw MJ; Talbot NJ
    Mol Plant Microbe Interact; 2007 May; 20(5):475-91. PubMed ID: 17506326
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Magnaporthe grisea cutinase2 mediates appressorium differentiation and host penetration and is required for full virulence.
    Skamnioti P; Gurr SJ
    Plant Cell; 2007 Aug; 19(8):2674-89. PubMed ID: 17704215
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the trail of a cereal killer: Exploring the biology of Magnaporthe grisea.
    Talbot NJ
    Annu Rev Microbiol; 2003; 57():177-202. PubMed ID: 14527276
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Independent genetic mechanisms mediate turgor generation and penetration peg formation during plant infection in the rice blast fungus.
    Park G; Bruno KS; Staiger CJ; Talbot NJ; Xu JR
    Mol Microbiol; 2004 Sep; 53(6):1695-707. PubMed ID: 15341648
    [TBL] [Abstract][Full Text] [Related]  

  • 9.
    Liu C; Shen N; Zhang Q; Qin M; Cao T; Zhu S; Tang D; Han L
    Int J Mol Sci; 2022 Jan; 23(2):. PubMed ID: 35055065
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Independent signaling pathways regulate cellular turgor during hyperosmotic stress and appressorium-mediated plant infection by Magnaporthe grisea.
    Dixon KP; Xu JR; Smirnoff N; Talbot NJ
    Plant Cell; 1999 Oct; 11(10):2045-58. PubMed ID: 10521531
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two independent S-phase checkpoints regulate appressorium-mediated plant infection by the rice blast fungus Magnaporthe oryzae.
    Osés-Ruiz M; Sakulkoo W; Littlejohn GR; Martin-Urdiroz M; Talbot NJ
    Proc Natl Acad Sci U S A; 2017 Jan; 114(2):E237-E244. PubMed ID: 28028232
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigating the cell and developmental biology of plant infection by the rice blast fungus Magnaporthe oryzae.
    Eseola AB; Ryder LS; Osés-Ruiz M; Findlay K; Yan X; Cruz-Mireles N; Molinari C; Garduño-Rosales M; Talbot NJ
    Fungal Genet Biol; 2021 Sep; 154():103562. PubMed ID: 33882359
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cellular differentiation and host invasion by the rice blast fungus Magnaporthe grisea.
    Caracuel-Rios Z; Talbot NJ
    Curr Opin Microbiol; 2007 Aug; 10(4):339-45. PubMed ID: 17707684
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Involvement of a Magnaporthe grisea serine/threonine kinase gene, MgATG1, in appressorium turgor and pathogenesis.
    Liu XH; Lu JP; Zhang L; Dong B; Min H; Lin FC
    Eukaryot Cell; 2007 Jun; 6(6):997-1005. PubMed ID: 17416896
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trehalose synthesis and metabolism are required at different stages of plant infection by Magnaporthe grisea.
    Foster AJ; Jenkinson JM; Talbot NJ
    EMBO J; 2003 Jan; 22(2):225-35. PubMed ID: 12514128
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A sensor kinase controls turgor-driven plant infection by the rice blast fungus.
    Ryder LS; Dagdas YF; Kershaw MJ; Venkataraman C; Madzvamuse A; Yan X; Cruz-Mireles N; Soanes DM; Oses-Ruiz M; Styles V; Sklenar J; Menke FLH; Talbot NJ
    Nature; 2019 Oct; 574(7778):423-427. PubMed ID: 31597961
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PDE1 encodes a P-type ATPase involved in appressorium-mediated plant infection by the rice blast fungus Magnaporthe grisea.
    Balhadère PV; Talbot NJ
    Plant Cell; 2001 Sep; 13(9):1987-2004. PubMed ID: 11549759
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cells in cells: morphogenetic and metabolic strategies conditioning rice infection by the blast fungus Magnaporthe oryzae.
    Fernandez J; Wilson RA
    Protoplasma; 2014 Jan; 251(1):37-47. PubMed ID: 23990109
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Infection-related development in the rice blast fungus Magnaporthe grisea.
    Hamer JE; Talbot NJ
    Curr Opin Microbiol; 1998 Dec; 1(6):693-7. PubMed ID: 10066544
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Peroxisomal alanine: glyoxylate aminotransferase AGT1 is indispensable for appressorium function of the rice blast pathogen, Magnaporthe oryzae.
    Bhadauria V; Banniza S; Vandenberg A; Selvaraj G; Wei Y
    PLoS One; 2012; 7(4):e36266. PubMed ID: 22558413
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.