These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 15788230)
1. Overoxidation of peroxiredoxins as an immediate and sensitive marker of oxidative stress in HepG2 cells and its application to the redox effects induced by ischemia/reperfusion in human liver. Cesaratto L; Vascotto C; D'Ambrosio C; Scaloni A; Baccarani U; Paron I; Damante G; Calligaris S; Quadrifoglio F; Tiribelli C; Tell G Free Radic Res; 2005 Mar; 39(3):255-68. PubMed ID: 15788230 [TBL] [Abstract][Full Text] [Related]
2. Redox proteomics and immunohistology to study molecular events during ischemia-reperfusion in human liver. Avellini C; Baccarani U; Trevisan G; Cesaratto L; Vascotto C; D'Aurizio F; Pandolfi M; Adani GL; Tell G Transplant Proc; 2007; 39(6):1755-60. PubMed ID: 17692604 [TBL] [Abstract][Full Text] [Related]
3. A proteomic approach to identify early molecular targets of oxidative stress in human epithelial lens cells. Paron I; D'Elia A; D'Ambrosio C; Scaloni A; D'Aurizio F; Prescott A; Damante G; Tell G Biochem J; 2004 Mar; 378(Pt 3):929-37. PubMed ID: 14678012 [TBL] [Abstract][Full Text] [Related]
4. A method for detection of overoxidation of cysteines: peroxiredoxins are oxidized in vivo at the active-site cysteine during oxidative stress. Wagner E; Luche S; Penna L; Chevallet M; Van Dorsselaer A; Leize-Wagner E; Rabilloud T Biochem J; 2002 Sep; 366(Pt 3):777-85. PubMed ID: 12059788 [TBL] [Abstract][Full Text] [Related]
5. Variable overoxidation of peroxiredoxins in human lung cells in severe oxidative stress. Lehtonen ST; Markkanen PM; Peltoniemi M; Kang SW; Kinnula VL Am J Physiol Lung Cell Mol Physiol; 2005 May; 288(5):L997-1001. PubMed ID: 15626747 [TBL] [Abstract][Full Text] [Related]
6. Regeneration of peroxiredoxins during recovery after oxidative stress: only some overoxidized peroxiredoxins can be reduced during recovery after oxidative stress. Chevallet M; Wagner E; Luche S; van Dorsselaer A; Leize-Wagner E; Rabilloud T J Biol Chem; 2003 Sep; 278(39):37146-53. PubMed ID: 12853451 [TBL] [Abstract][Full Text] [Related]
7. Inactivation of human peroxiredoxin I during catalysis as the result of the oxidation of the catalytic site cysteine to cysteine-sulfinic acid. Yang KS; Kang SW; Woo HA; Hwang SC; Chae HZ; Kim K; Rhee SG J Biol Chem; 2002 Oct; 277(41):38029-36. PubMed ID: 12161445 [TBL] [Abstract][Full Text] [Related]
8. Proteomics analysis of cellular response to oxidative stress. Evidence for in vivo overoxidation of peroxiredoxins at their active site. Rabilloud T; Heller M; Gasnier F; Luche S; Rey C; Aebersold R; Benahmed M; Louisot P; Lunardi J J Biol Chem; 2002 May; 277(22):19396-401. PubMed ID: 11904290 [TBL] [Abstract][Full Text] [Related]
9. Oxidative stress triggers thiol oxidation in the glyceraldehyde-3-phosphate dehydrogenase of Staphylococcus aureus. Weber H; Engelmann S; Becher D; Hecker M Mol Microbiol; 2004 Apr; 52(1):133-40. PubMed ID: 15049816 [TBL] [Abstract][Full Text] [Related]
10. Proteomics of the oxidative stress response induced by hydrogen peroxide and paraquat reveals a novel AhpC-like protein in Pseudomonas aeruginosa. Hare NJ; Scott NE; Shin EH; Connolly AM; Larsen MR; Palmisano G; Cordwell SJ Proteomics; 2011 Aug; 11(15):3056-69. PubMed ID: 21674802 [TBL] [Abstract][Full Text] [Related]
11. Variants of peroxiredoxins expression in response to hydroperoxide stress. Mitsumoto A; Takanezawa Y; Okawa K; Iwamatsu A; Nakagawa Y Free Radic Biol Med; 2001 Mar; 30(6):625-35. PubMed ID: 11295360 [TBL] [Abstract][Full Text] [Related]
13. Catalytic mechanism of thiol peroxidase from Escherichia coli. Sulfenic acid formation and overoxidation of essential CYS61. Baker LM; Poole LB J Biol Chem; 2003 Mar; 278(11):9203-11. PubMed ID: 12514184 [TBL] [Abstract][Full Text] [Related]
14. Proteomic analysis of liver tissues subjected to early ischemia/reperfusion injury during human orthotopic liver transplantation. Vascotto C; Cesaratto L; D'Ambrosio C; Scaloni A; Avellini C; Paron I; Baccarani U; Adani GL; Tiribelli C; Quadrifoglio F; Tell G Proteomics; 2006 Jun; 6(11):3455-65. PubMed ID: 16622838 [TBL] [Abstract][Full Text] [Related]
15. Increased expression of peroxiredoxin 1 and identification of a novel lipid-metabolizing enzyme in the early phase of liver ischemia reperfusion injury. Wilson CH; Zeile S; Chataway T; Nieuwenhuijs VB; Padbury RT; Barritt GJ Proteomics; 2011 Nov; 11(22):4385-96. PubMed ID: 21905220 [TBL] [Abstract][Full Text] [Related]
16. Proteomic detection of hydrogen peroxide-sensitive thiol proteins in Jurkat cells. Baty JW; Hampton MB; Winterbourn CC Biochem J; 2005 Aug; 389(Pt 3):785-95. PubMed ID: 15801906 [TBL] [Abstract][Full Text] [Related]
17. Overoxidation of 2-Cys peroxiredoxin in prokaryotes: cyanobacterial 2-Cys peroxiredoxins sensitive to oxidative stress. Pascual MB; Mata-Cabana A; Florencio FJ; Lindahl M; Cejudo FJ J Biol Chem; 2010 Nov; 285(45):34485-92. PubMed ID: 20736168 [TBL] [Abstract][Full Text] [Related]
18. Oxidation state governs structural transitions in peroxiredoxin II that correlate with cell cycle arrest and recovery. Phalen TJ; Weirather K; Deming PB; Anathy V; Howe AK; van der Vliet A; Jönsson TJ; Poole LB; Heintz NH J Cell Biol; 2006 Dec; 175(5):779-89. PubMed ID: 17145963 [TBL] [Abstract][Full Text] [Related]
19. Distinct characteristics of two 2-Cys peroxiredoxins of Vibrio vulnificus suggesting differential roles in detoxifying oxidative stress. Bang YJ; Oh MH; Choi SH J Biol Chem; 2012 Dec; 287(51):42516-24. PubMed ID: 23095744 [TBL] [Abstract][Full Text] [Related]
20. Nonredundant antioxidant defense by multiple two-cysteine peroxiredoxins in human prostate cancer cells. Shen C; Nathan C Mol Med; 2002 Feb; 8(2):95-102. PubMed ID: 12080185 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]