These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
311 related articles for article (PubMed ID: 15788414)
1. Mouse large can modify complex N- and mucin O-glycans on alpha-dystroglycan to induce laminin binding. Patnaik SK; Stanley P J Biol Chem; 2005 May; 280(21):20851-9. PubMed ID: 15788414 [TBL] [Abstract][Full Text] [Related]
2. Large induces functional glycans in an O-mannosylation dependent manner and targets GlcNAc terminals on alpha-dystroglycan. Hu Y; Li ZF; Wu X; Lu Q PLoS One; 2011 Feb; 6(2):e16866. PubMed ID: 21347376 [TBL] [Abstract][Full Text] [Related]
3. Differential glycosylation of α-dystroglycan and proteins other than α-dystroglycan by like-glycosyltransferase. Zhang P; Hu H Glycobiology; 2012 Feb; 22(2):235-47. PubMed ID: 21930648 [TBL] [Abstract][Full Text] [Related]
4. AGO61-dependent GlcNAc modification primes the formation of functional glycans on α-dystroglycan. Yagi H; Nakagawa N; Saito T; Kiyonari H; Abe T; Toda T; Wu SW; Khoo KH; Oka S; Kato K Sci Rep; 2013 Nov; 3():3288. PubMed ID: 24256719 [TBL] [Abstract][Full Text] [Related]
5. Mutational and functional analysis of Large in a novel CHO glycosylation mutant. Aguilan JT; Sundaram S; Nieves E; Stanley P Glycobiology; 2009 Sep; 19(9):971-86. PubMed ID: 19470663 [TBL] [Abstract][Full Text] [Related]
6. Dystroglycan function requires xylosyl- and glucuronyltransferase activities of LARGE. Inamori K; Yoshida-Moriguchi T; Hara Y; Anderson ME; Yu L; Campbell KP Science; 2012 Jan; 335(6064):93-6. PubMed ID: 22223806 [TBL] [Abstract][Full Text] [Related]
7. HNK-1 sulfotransferase-dependent sulfation regulating laminin-binding glycans occurs in the post-phosphoryl moiety on α-dystroglycan. Nakagawa N; Takematsu H; Oka S Glycobiology; 2013 Sep; 23(9):1066-74. PubMed ID: 23723439 [TBL] [Abstract][Full Text] [Related]
8. O-mannosyl phosphorylation of alpha-dystroglycan is required for laminin binding. Yoshida-Moriguchi T; Yu L; Stalnaker SH; Davis S; Kunz S; Madson M; Oldstone MB; Schachter H; Wells L; Campbell KP Science; 2010 Jan; 327(5961):88-92. PubMed ID: 20044576 [TBL] [Abstract][Full Text] [Related]
9. Tumor suppressor function of laminin-binding alpha-dystroglycan requires a distinct beta3-N-acetylglucosaminyltransferase. Bao X; Kobayashi M; Hatakeyama S; Angata K; Gullberg D; Nakayama J; Fukuda MN; Fukuda M Proc Natl Acad Sci U S A; 2009 Jul; 106(29):12109-14. PubMed ID: 19587235 [TBL] [Abstract][Full Text] [Related]
10. LARGE expression augments the glycosylation of glycoproteins in addition to α-dystroglycan conferring laminin binding. Zhang Z; Zhang P; Hu H PLoS One; 2011 Apr; 6(4):e19080. PubMed ID: 21533062 [TBL] [Abstract][Full Text] [Related]
11. Like-acetylglucosaminyltransferase (LARGE)-dependent modification of dystroglycan at Thr-317/319 is required for laminin binding and arenavirus infection. Hara Y; Kanagawa M; Kunz S; Yoshida-Moriguchi T; Satz JS; Kobayashi YM; Zhu Z; Burden SJ; Oldstone MB; Campbell KP Proc Natl Acad Sci U S A; 2011 Oct; 108(42):17426-31. PubMed ID: 21987822 [TBL] [Abstract][Full Text] [Related]
12. CDP-glycerol inhibits the synthesis of the functional Imae R; Manya H; Tsumoto H; Osumi K; Tanaka T; Mizuno M; Kanagawa M; Kobayashi K; Toda T; Endo T J Biol Chem; 2018 Aug; 293(31):12186-12198. PubMed ID: 29884773 [TBL] [Abstract][Full Text] [Related]
14. Human natural killer-1 sulfotransferase (HNK-1ST)-induced sulfate transfer regulates laminin-binding glycans on α-dystroglycan. Nakagawa N; Manya H; Toda T; Endo T; Oka S J Biol Chem; 2012 Aug; 287(36):30823-32. PubMed ID: 22801424 [TBL] [Abstract][Full Text] [Related]
15. Glycosylation with ribitol-phosphate in mammals: New insights into the O-mannosyl glycan. Manya H; Endo T Biochim Biophys Acta Gen Subj; 2017 Oct; 1861(10):2462-2472. PubMed ID: 28711406 [TBL] [Abstract][Full Text] [Related]
16. N-terminal domain on dystroglycan enables LARGE1 to extend matriglycan on α-dystroglycan and prevents muscular dystrophy. Okuma H; Hord JM; Chandel I; Venzke D; Anderson ME; Walimbe AS; Joseph S; Gastel Z; Hara Y; Saito F; Matsumura K; Campbell KP Elife; 2023 Feb; 12():. PubMed ID: 36723429 [TBL] [Abstract][Full Text] [Related]
17. [Recent Advances in α-dystroglycanopathy]. Kuga A; Kanagawa M; Toda T Brain Nerve; 2011 Nov; 63(11):1189-95. PubMed ID: 22068471 [TBL] [Abstract][Full Text] [Related]
18. Defective mucin-type glycosylation on α-dystroglycan in COG-deficient cells increases its susceptibility to bacterial proteases. Yu SH; Zhao P; Prabhakar PK; Sun T; Beedle A; Boons GJ; Moremen KW; Wells L; Steet R J Biol Chem; 2018 Sep; 293(37):14534-14544. PubMed ID: 30049793 [TBL] [Abstract][Full Text] [Related]
19. Reduced glycosylation of α-dystroglycans on carcinoma cells contributes to formation of highly infiltrative histological patterns in prostate cancer. Shimojo H; Kobayashi M; Kamigaito T; Shimojo Y; Fukuda M; Nakayama J Prostate; 2011 Aug; 71(11):1151-7. PubMed ID: 21656825 [TBL] [Abstract][Full Text] [Related]
20. Wnt-driven LARGE2 mediates laminin-adhesive O-glycosylation in human colonic epithelial cells and colorectal cancer. Dietinger V; García de Durango CR; Wiechmann S; Boos SL; Michl M; Neumann J; Hermeking H; Kuster B; Jung P Cell Commun Signal; 2020 Jun; 18(1):102. PubMed ID: 32586342 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]