BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 15788489)

  • 1. Beta-adrenergic- and muscarinic receptor-induced changes in cAMP activity in adult cardiac myocytes detected with FRET-based biosensor.
    Warrier S; Belevych AE; Ruse M; Eckert RL; Zaccolo M; Pozzan T; Harvey RD
    Am J Physiol Cell Physiol; 2005 Aug; 289(2):C455-61. PubMed ID: 15788489
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Why FRET? Focus on "beta-Adrenergic and muscarinic receptor-induced changes in cAMP activity in adult cardiac myocytes using a FRET-based biosensor".
    Hammond HK
    Am J Physiol Cell Physiol; 2005 Aug; 289(2):C246-7. PubMed ID: 16002624
    [No Abstract]   [Full Text] [Related]  

  • 3. Cytoplasmic cAMP concentrations in intact cardiac myocytes.
    Iancu RV; Ramamurthy G; Warrier S; Nikolaev VO; Lohse MJ; Jones SW; Harvey RD
    Am J Physiol Cell Physiol; 2008 Aug; 295(2):C414-22. PubMed ID: 18550706
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FRET biosensor uncovers cAMP nano-domains at β-adrenergic targets that dictate precise tuning of cardiac contractility.
    Surdo NC; Berrera M; Koschinski A; Brescia M; Machado MR; Carr C; Wright P; Gorelik J; Morotti S; Grandi E; Bers DM; Pantano S; Zaccolo M
    Nat Commun; 2017 Apr; 8():15031. PubMed ID: 28425435
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cyclic AMP imaging in adult cardiac myocytes reveals far-reaching beta1-adrenergic but locally confined beta2-adrenergic receptor-mediated signaling.
    Nikolaev VO; Bünemann M; Schmitteckert E; Lohse MJ; Engelhardt S
    Circ Res; 2006 Nov; 99(10):1084-91. PubMed ID: 17038640
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FRET-based direct detection of dynamic protein kinase A activity on the sarcoplasmic reticulum in cardiomyocytes.
    Liu S; Zhang J; Xiang YK
    Biochem Biophys Res Commun; 2011 Jan; 404(2):581-6. PubMed ID: 21130738
    [TBL] [Abstract][Full Text] [Related]  

  • 7. cAMP/PKA signaling compartmentalization in cardiomyocytes: Lessons from FRET-based biosensors.
    Ghigo A; Mika D
    J Mol Cell Cardiol; 2019 Jun; 131():112-121. PubMed ID: 31028775
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of cholesterol depletion on compartmentalized cAMP responses in adult cardiac myocytes.
    Agarwal SR; MacDougall DA; Tyser R; Pugh SD; Calaghan SC; Harvey RD
    J Mol Cell Cardiol; 2011 Mar; 50(3):500-9. PubMed ID: 21115018
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial and temporal aspects of cAMP signalling in cardiac myocytes.
    Iancu RV; Ramamurthy G; Harvey RD
    Clin Exp Pharmacol Physiol; 2008 Nov; 35(11):1343-8. PubMed ID: 18671712
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigating cardiac β-adrenergic nuclear signaling with FRET-based biosensors.
    Vandecasteele G; Bedioune I
    Ann Endocrinol (Paris); 2021 Jun; 82(3-4):198-200. PubMed ID: 32482343
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deletion of Osteopontin Enhances β₂-Adrenergic Receptor-Dependent Anti-Fibrotic Signaling in Cardiomyocytes.
    Pollard CM; Desimine VL; Wertz SL; Perez A; Parker BM; Maning J; McCrink KA; Shehadeh LA; Lymperopoulos A
    Int J Mol Sci; 2019 Mar; 20(6):. PubMed ID: 30897705
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeting FRET-Based Reporters for cAMP and PKA Activity Using AKAP79.
    Musheshe N; Lobo MJ; Schmidt M; Zaccolo M
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 29976855
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Studying β
    Grisan F; Burdyga A; Iannucci LF; Surdo NC; Pozzan T; Di Benedetto G; Lefkimmiatis K
    Prog Biophys Mol Biol; 2020 Aug; 154():30-38. PubMed ID: 31266653
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PDE4 and mAKAPβ are nodal organizers of β2-ARs nuclear PKA signalling in cardiac myocytes.
    Bedioune I; Lefebvre F; Lechêne P; Varin A; Domergue V; Kapiloff MS; Fischmeister R; Vandecasteele G
    Cardiovasc Res; 2018 Sep; 114(11):1499-1511. PubMed ID: 29733383
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microdomain switch of cGMP-regulated phosphodiesterases leads to ANP-induced augmentation of β-adrenoceptor-stimulated contractility in early cardiac hypertrophy.
    Perera RK; Sprenger JU; Steinbrecher JH; Hübscher D; Lehnart SE; Abesser M; Schuh K; El-Armouche A; Nikolaev VO
    Circ Res; 2015 Apr; 116(8):1304-11. PubMed ID: 25688144
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decoding spatial and temporal features of neuronal cAMP/PKA signaling with FRET biosensors.
    Castro LR; Guiot E; Polito M; Paupardin-Tritsch D; Vincent P
    Biotechnol J; 2014 Feb; 9(2):192-202. PubMed ID: 24478276
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Whole-Cell cAMP and PKA Activity are Epiphenomena, Nanodomain Signaling Matters.
    Bers DM; Xiang YK; Zaccolo M
    Physiology (Bethesda); 2019 Jul; 34(4):240-249. PubMed ID: 31165682
    [TBL] [Abstract][Full Text] [Related]  

  • 18. cAMP-mediated beta-adrenergic signaling negatively regulates Gq-coupled receptor-mediated fetal gene response in cardiomyocytes.
    Patrizio M; Vago V; Musumeci M; Fecchi K; Sposi NM; Mattei E; Catalano L; Stati T; Marano G
    J Mol Cell Cardiol; 2008 Dec; 45(6):761-9. PubMed ID: 18851973
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel, isotype-specific sensors for protein kinase A subunit interaction based on bioluminescence resonance energy transfer (BRET).
    Prinz A; Diskar M; Erlbruch A; Herberg FW
    Cell Signal; 2006 Oct; 18(10):1616-25. PubMed ID: 16524697
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a high-throughput assay for monitoring cAMP levels in cardiac ventricular myocytes.
    Walsh KB; Rich TC; Coffman ZJ
    J Cardiovasc Pharmacol; 2009 Mar; 53(3):223-30. PubMed ID: 19247193
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.