BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 15788700)

  • 1. Augmented prefrontal acetylcholine release during challenged attentional performance.
    Kozak R; Bruno JP; Sarter M
    Cereb Cortex; 2006 Jan; 16(1):9-17. PubMed ID: 15788700
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of acute and repeated systemic administration of ketamine on prefrontal acetylcholine release and sustained attention performance in rats.
    Nelson CL; Burk JA; Bruno JP; Sarter M
    Psychopharmacology (Berl); 2002 May; 161(2):168-79. PubMed ID: 11981597
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward a neuro-cognitive animal model of the cognitive symptoms of schizophrenia: disruption of cortical cholinergic neurotransmission following repeated amphetamine exposure in attentional task-performing, but not non-performing, rats.
    Kozak R; Martinez V; Young D; Brown H; Bruno JP; Sarter M
    Neuropsychopharmacology; 2007 Oct; 32(10):2074-86. PubMed ID: 17299502
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bidirectional modulation of basal forebrain N-methyl-D-aspartate receptor function differentially affects visual attention but not visual discrimination performance.
    Turchi J; Sarter M
    Neuroscience; 2001; 104(2):407-17. PubMed ID: 11377844
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microsphere embolism-induced cortical cholinergic deafferentation and impairments in attentional performance.
    Craft TK; Mahoney JH; Devries AC; Sarter M
    Eur J Neurosci; 2005 Jun; 21(11):3117-32. PubMed ID: 15978021
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glutamate receptors in nucleus accumbens mediate regionally selective increases in cortical acetylcholine release.
    Zmarowski A; Sarter M; Bruno JP
    Synapse; 2007 Mar; 61(3):115-23. PubMed ID: 17146770
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Basal forebrain glutamatergic modulation of cortical acetylcholine release.
    Fadel J; Sarter M; Bruno JP
    Synapse; 2001 Mar; 39(3):201-12. PubMed ID: 11169769
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Attentional demands for demonstrating deficits following intrabasalis infusions of 192 IgG-saporin.
    Burk JA; Lowder MW; Altemose KE
    Behav Brain Res; 2008 Dec; 195(2):231-8. PubMed ID: 18840475
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Noradrenergic modulation of cognitive function in rat medial prefrontal cortex as measured by attentional set shifting capability.
    Lapiz MD; Morilak DA
    Neuroscience; 2006 Feb; 137(3):1039-49. PubMed ID: 16298081
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensitization of cortical acetylcholine release by repeated administration of nicotine in rats.
    Arnold HM; Nelson CL; Sarter M; Bruno JP
    Psychopharmacology (Berl); 2003 Feb; 165(4):346-58. PubMed ID: 12454730
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stimulation of cortical acetylcholine release by orexin A.
    Fadel J; Pasumarthi R; Reznikov LR
    Neuroscience; 2005; 130(2):541-7. PubMed ID: 15664710
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increased acetylcholine release in the rat medial prefrontal cortex during performance of a visual attentional task.
    Passetti F; Dalley JW; O'Connell MT; Everitt BJ; Robbins TW
    Eur J Neurosci; 2000 Aug; 12(8):3051-8. PubMed ID: 10971646
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increases in cortical acetylcholine release during sustained attention performance in rats.
    Himmelheber AM; Sarter M; Bruno JP
    Brain Res Cogn Brain Res; 2000 Jun; 9(3):313-25. PubMed ID: 10808142
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cortical cholinergic function and deficits in visual attentional performance in rats following 192 IgG-saporin-induced lesions of the medial prefrontal cortex.
    Dalley JW; Theobald DE; Bouger P; Chudasama Y; Cardinal RN; Robbins TW
    Cereb Cortex; 2004 Aug; 14(8):922-32. PubMed ID: 15084496
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unraveling the attentional functions of cortical cholinergic inputs: interactions between signal-driven and cognitive modulation of signal detection.
    Sarter M; Hasselmo ME; Bruno JP; Givens B
    Brain Res Brain Res Rev; 2005 Feb; 48(1):98-111. PubMed ID: 15708630
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Medial prefrontal cortex infusions of bupivacaine or AP-5 block extinction of amphetamine conditioned place preference.
    Hsu E; Packard MG
    Neurobiol Learn Mem; 2008 May; 89(4):504-12. PubMed ID: 17905604
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of divalproex and atypical antipsychotic drugs on dopamine and acetylcholine efflux in rat hippocampus and prefrontal cortex.
    Huang M; Li Z; Ichikawa J; Dai J; Meltzer HY
    Brain Res; 2006 Jul; 1099(1):44-55. PubMed ID: 16824491
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NMDA and dopamine interactions in the nucleus accumbens modulate cortical acetylcholine release.
    Zmarowski A; Sarter M; Bruno JP
    Eur J Neurosci; 2005 Oct; 22(7):1731-40. PubMed ID: 16197513
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prefrontal cortical modulation of acetylcholine release in posterior parietal cortex.
    Nelson CL; Sarter M; Bruno JP
    Neuroscience; 2005; 132(2):347-59. PubMed ID: 15802188
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Memory retrieval in response to partial cues requires NMDA receptor-dependent neurotransmission in the medial prefrontal cortex.
    Jo YS; Choi JS
    Neurobiol Learn Mem; 2014 Mar; 109():20-6. PubMed ID: 24269352
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.