These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 15788700)

  • 21. Sensitized attentional performance and Fos-immunoreactive cholinergic neurons in the basal forebrain of amphetamine-pretreated rats.
    Martinez V; Parikh V; Sarter M
    Biol Psychiatry; 2005 May; 57(10):1138-46. PubMed ID: 15866553
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Inactivation of prefrontal cortex abolishes cortical acetylcholine release evoked by sensory or sensory pathway stimulation in the rat.
    Rasmusson DD; Smith SA; Semba K
    Neuroscience; 2007 Oct; 149(1):232-41. PubMed ID: 17850979
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effects of manipulations of attentional demand on cortical acetylcholine release.
    Himmelheber AM; Sarter M; Bruno JP
    Brain Res Cogn Brain Res; 2001 Dec; 12(3):353-70. PubMed ID: 11689296
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The 5-choice serial reaction time task: behavioural pharmacology and functional neurochemistry.
    Robbins TW
    Psychopharmacology (Berl); 2002 Oct; 163(3-4):362-80. PubMed ID: 12373437
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cholinergic mediation of attention: contributions of phasic and tonic increases in prefrontal cholinergic activity.
    Parikh V; Sarter M
    Ann N Y Acad Sci; 2008; 1129():225-35. PubMed ID: 18591483
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Antisense oligodeoxynucleotide-induced suppression of basal forebrain NMDA-NR1 subunits selectively impairs visual attentional performance in rats.
    Turchi J; Sarter M
    Eur J Neurosci; 2001 Jul; 14(1):103-17. PubMed ID: 11488954
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The neurotensin analog NT69L enhances medial prefrontal cortical dopamine and acetylcholine efflux: potentiation of risperidone-, but not haloperidol-, induced dopamine efflux.
    Prus AJ; Huang M; Li Z; Dai J; Meltzer HY
    Brain Res; 2007 Dec; 1184():354-64. PubMed ID: 17988654
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modulation of Delta(9)-THC-induced increase of cortical and hippocampal acetylcholine release by micro opioid and D(1) dopamine receptors.
    Pisanu A; Acquas E; Fenu S; Di Chiara G
    Neuropharmacology; 2006 May; 50(6):661-70. PubMed ID: 16427098
    [TBL] [Abstract][Full Text] [Related]  

  • 29. D1 dopamine and NMDA receptors interactions in the medial prefrontal cortex: modulation of spatial working memory in rats.
    Rios Valentim SJ; Gontijo AV; Peres MD; Rodrigues LC; Nakamura-Palacios EM
    Behav Brain Res; 2009 Dec; 204(1):124-8. PubMed ID: 19482047
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Stress, prefrontal cortex and environmental enrichment: studies on dopamine and acetylcholine release and working memory performance in rats.
    Del Arco A; Segovia G; Garrido P; de Blas M; Mora F
    Behav Brain Res; 2007 Jan; 176(2):267-73. PubMed ID: 17097747
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hippocampal acetylcholine efflux increases during negative patterning and elemental discrimination in rats.
    Hata T; Kumai K; Okaichi H
    Neurosci Lett; 2007 May; 418(2):127-32. PubMed ID: 17391843
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Differential cortical acetylcholine release in rats performing a sustained attention task versus behavioral control tasks that do not explicitly tax attention.
    Arnold HM; Burk JA; Hodgson EM; Sarter M; Bruno JP
    Neuroscience; 2002; 114(2):451-60. PubMed ID: 12204214
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transient inactivation of the neonatal ventral hippocampus permanently disrupts the mesolimbic regulation of prefrontal cholinergic transmission: implications for schizophrenia.
    Brooks JM; Sarter M; Bruno JP
    Neuropsychopharmacology; 2011 Nov; 36(12):2477-87. PubMed ID: 21814184
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Muscarinic acetylcholine neurotransmission enhances the late-phase of long-term potentiation in the hippocampal-prefrontal cortex pathway of rats in vivo: a possible involvement of monoaminergic systems.
    Lopes Aguiar C; Romcy-Pereira RN; Escorsim Szawka R; Galvis-Alonso OY; Anselmo-Franci JA; Pereira Leite J
    Neuroscience; 2008 Jun; 153(4):1309-19. PubMed ID: 18455317
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Neurotensin modulation of acetylcholine, GABA, and aspartate release from rat prefrontal cortex studied in vivo with microdialysis.
    Petkova-Kirova P; Rakovska A; Della Corte L; Zaekova G; Radomirov R; Mayer A
    Brain Res Bull; 2008 Sep; 77(2-3):129-35. PubMed ID: 18721670
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Food-elicited increases in cortical acetylcholine release require orexin transmission.
    Frederick-Duus D; Guyton MF; Fadel J
    Neuroscience; 2007 Nov; 149(3):499-507. PubMed ID: 17928158
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Distinct changes in cortical acetylcholine and noradrenaline efflux during contingent and noncontingent performance of a visual attentional task.
    Dalley JW; McGaughy J; O'Connell MT; Cardinal RN; Levita L; Robbins TW
    J Neurosci; 2001 Jul; 21(13):4908-14. PubMed ID: 11425918
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Selective cholinergic lesions in the rat nucleus basalis magnocellularis with limited damage in the medial septum specifically alter attention performance in the five-choice serial reaction time task.
    Harati H; Barbelivien A; Cosquer B; Majchrzak M; Cassel JC
    Neuroscience; 2008 Apr; 153(1):72-83. PubMed ID: 18339485
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of gonadectomy and androgen supplementation on attention in male rats.
    Johnson RT; Burk JA
    Neurobiol Learn Mem; 2006 May; 85(3):219-27. PubMed ID: 16330230
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Operant performance and cortical acetylcholine release: role of response rate, reward density, and non-contingent stimuli.
    Himmelheber AM; Sarter M; Bruno JP
    Brain Res Cogn Brain Res; 1997 Jul; 6(1):23-36. PubMed ID: 9395847
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.