BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 15788766)

  • 1. Mechanisms of transport and exocytosis of dense-core granules containing tissue plasminogen activator in developing hippocampal neurons.
    Silverman MA; Johnson S; Gurkins D; Farmer M; Lochner JE; Rosa P; Scalettar BA
    J Neurosci; 2005 Mar; 25(12):3095-106. PubMed ID: 15788766
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hindered submicron mobility and long-term storage of presynaptic dense-core granules revealed by single-particle tracking.
    Scalettar BA; Jacobs C; Fulwiler A; Prahl L; Simon A; Hilken L; Lochner JE
    Dev Neurobiol; 2012 Sep; 72(9):1181-95. PubMed ID: 21976424
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activity-dependent release of tissue plasminogen activator from the dendritic spines of hippocampal neurons revealed by live-cell imaging.
    Lochner JE; Honigman LS; Grant WF; Gessford SK; Hansen AB; Silverman MA; Scalettar BA
    J Neurobiol; 2006 May; 66(6):564-77. PubMed ID: 16555239
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient copackaging and cotransport yields postsynaptic colocalization of neuromodulators associated with synaptic plasticity.
    Lochner JE; Spangler E; Chavarha M; Jacobs C; McAllister K; Schuttner LC; Scalettar BA
    Dev Neurobiol; 2008 Sep; 68(10):1243-56. PubMed ID: 18563704
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neuronal calcium sensor-1 binds to regulated secretory organelles and functions in basal and stimulated exocytosis in PC12 cells.
    Scalettar BA; Rosa P; Taverna E; Francolini M; Tsuboi T; Terakawa S; Koizumi S; Roder J; Jeromin A
    J Cell Sci; 2002 Jun; 115(Pt 11):2399-412. PubMed ID: 12006624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Requirements for the identification of dense-core granules.
    Meldolesi J; Chieregatti E; Luisa Malosio M
    Trends Cell Biol; 2004 Jan; 14(1):13-9. PubMed ID: 14729176
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How neurosecretory vesicles release their cargo.
    Scalettar BA
    Neuroscientist; 2006 Apr; 12(2):164-76. PubMed ID: 16514013
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of the actin cytoskeleton with microtubules regulates secretory organelle movement near the plasma membrane in human endothelial cells.
    Manneville JB; Etienne-Manneville S; Skehel P; Carter T; Ogden D; Ferenczi M
    J Cell Sci; 2003 Oct; 116(Pt 19):3927-38. PubMed ID: 12928328
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Imaging of evoked dense-core-vesicle exocytosis in hippocampal neurons reveals long latencies and kiss-and-run fusion events.
    Xia X; Lessmann V; Martin TF
    J Cell Sci; 2009 Jan; 122(Pt 1):75-82. PubMed ID: 19066284
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synaptotagmin VII modulates the kinetics of dense-core vesicle exocytosis in PC12 cells.
    Tsuboi T; Fukuda M
    Genes Cells; 2007 Apr; 12(4):511-9. PubMed ID: 17397398
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression of the dominant-negative tail of myosin Va enhances exocytosis of large dense core vesicles in neurons.
    Bittins CM; Eichler TW; Gerdes HH
    Cell Mol Neurobiol; 2009 Jun; 29(4):597-608. PubMed ID: 19214741
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The secretory response through electric stimulation of differentiated PC12 rat pheochromocytoma cells transfected with neuropeptide Y fused with enhanced green fluorescent protein.
    Mizuno A; Mie M; Yanagida Y; Aizawa M; Kobatake E
    Biotechnol Lett; 2003 Apr; 25(7):547-52. PubMed ID: 12882143
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potassium ion- and nitric oxide-induced exocytosis from populations of hippocampal synapses during synaptic maturation in vitro.
    Sporns O; Jenkinson S
    Neuroscience; 1997 Oct; 80(4):1057-73. PubMed ID: 9284060
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Age-dependent preferential dense-core vesicle exocytosis in neuroendocrine cells revealed by newly developed monomeric fluorescent timer protein.
    Tsuboi T; Kitaguchi T; Karasawa S; Fukuda M; Miyawaki A
    Mol Biol Cell; 2010 Jan; 21(1):87-94. PubMed ID: 19889833
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynactin regulates bidirectional transport of dense-core vesicles in the axon and dendrites of cultured hippocampal neurons.
    Kwinter DM; Lo K; Mafi P; Silverman MA
    Neuroscience; 2009 Sep; 162(4):1001-10. PubMed ID: 19497353
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Live-cell imaging of vesicle trafficking and divalent metal ions by total internal reflection fluorescence (TIRF) microscopy.
    Loder MK; Tsuboi T; Rutter GA
    Methods Mol Biol; 2013; 950():13-26. PubMed ID: 23086867
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics of peptidergic secretory granule transport are regulated by neuronal stimulation.
    Sobota JA; Mohler WA; Cowan AE; Eipper BA; Mains RE
    BMC Neurosci; 2010 Mar; 11():32. PubMed ID: 20202202
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamics of immature secretory granules: role of cytoskeletal elements during transport, cortical restriction, and F-actin-dependent tethering.
    Rudolf R; Salm T; Rustom A; Gerdes HH
    Mol Biol Cell; 2001 May; 12(5):1353-65. PubMed ID: 11359927
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Real-time imaging of the dynamics of secretory granules in growth cones.
    Abney JR; Meliza CD; Cutler B; Kingma M; Lochner JE; Scalettar BA
    Biophys J; 1999 Nov; 77(5):2887-95. PubMed ID: 10545386
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sorting and directed transport of membrane proteins during development of hippocampal neurons in culture.
    Silverman MA; Kaech S; Jareb M; Burack MA; Vogt L; Sonderegger P; Banker G
    Proc Natl Acad Sci U S A; 2001 Jun; 98(13):7051-7. PubMed ID: 11416186
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.