BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 15789432)

  • 1. Activity-dependent change in morphology of the glial tubular lattice of the crayfish medial giant nerve fiber.
    Beshay JE; Hahn P; Beshay VE; Hargittai PT; Lieberman EM
    Glia; 2005 Aug; 51(2):121-31. PubMed ID: 15789432
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glutamine cycle enzymes in the crayfish giant nerve fiber: implications for axon-to-glia signaling.
    McKinnon E; Hargittai PT; Grossfeld RM; Lieberman EM
    Glia; 1995 Jul; 14(3):198-208. PubMed ID: 7591031
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Trans-glial channels in ventral nerve roots of crayfish.
    Shivers RR; Brightman MW
    J Comp Neurol; 1976 May; 167(1):1-26. PubMed ID: 1270620
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conduction failures in rabbit saphenous nerve unmyelinated fibers.
    Zhu ZR; Tang XW; Wang WT; Ren W; Xing JL; Zhang JR; Duan JH; Wang YY; Jiao X; Hu SJ
    Neurosignals; 2009; 17(3):181-95. PubMed ID: 19295243
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Studies of axon-glial cell interactions and periaxonal K+ homeostasis--III. The effect of anisosmotic media and potassium on the relationship between the resistance in series with the axon membrane and glial cell volume.
    Lieberman EM; Hassan S
    Neuroscience; 1988 Jun; 25(3):971-81. PubMed ID: 3405438
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical recording of electrical activity from axons and glia of frog optic nerve: potentiometric dye responses and morphometrics.
    Konnerth A; Orkand PM; Orkand RK
    Glia; 1988; 1(3):225-32. PubMed ID: 2852172
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A potassium channel-linked mechanism of glial cell swelling in the postischemic retina.
    Pannicke T; Iandiev I; Uckermann O; Biedermann B; Kutzera F; Wiedemann P; Wolburg H; Reichenbach A; Bringmann A
    Mol Cell Neurosci; 2004 Aug; 26(4):493-502. PubMed ID: 15276152
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of a synaptiform transmission between a neuron and a glial cell in the leech central nervous system.
    Britz FC; Lohr C; Schmidt J; Deitmer JW
    Glia; 2002 May; 38(3):215-27. PubMed ID: 11968059
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polysialic acid is required for active phases of morphological plasticity of neurosecretory axons and their glia.
    Monlezun S; Ouali S; Poulain DA; Theodosis DT
    Mol Cell Neurosci; 2005 Aug; 29(4):516-24. PubMed ID: 15922622
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Studies of axon-glial cell interactions and periaxonal K+ homeostasis--II. The effect of axonal stimulation, cholinergic agents and transport inhibitors on the resistance in series with the axon membrane.
    Hassan S; Lieberman EM
    Neuroscience; 1988 Jun; 25(3):961-9. PubMed ID: 3405437
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Short-term plasticity of Bergmann glial cell extrasynaptic currents during parallel fiber stimulation in rat cerebellum.
    Bellamy TC; Ogden D
    Glia; 2005 Dec; 52(4):325-35. PubMed ID: 16078233
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Processes and components participating in the generation of intrinsic optical signal changes in vitro.
    Buchheim K; Wessel O; Siegmund H; Schuchmann S; Meierkord H
    Eur J Neurosci; 2005 Jul; 22(1):125-32. PubMed ID: 16029202
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrastructure of neuroglial contacts in crayfish stretch receptor.
    Fedorenko GM; Uzdensky AB
    Cell Tissue Res; 2009 Sep; 337(3):477-90. PubMed ID: 19585151
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studies of axon-glial cell interactions and periaxonal K- homeostasis--I. The influence of Na+, K+, Cl- and cholinergic agents on the membrane potential of the adaxonal glia of the crayfish medial giant axon.
    Brunder DG; Lieberman EM
    Neuroscience; 1988 Jun; 25(3):951-9. PubMed ID: 3405436
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of NMDA receptor contribution to axon-to-glia signaling in the crayfish medial giant nerve fiber.
    Gafurov BS; Urazaev AK; Grossfeld RM; Lieberman EM
    Glia; 2002 Apr; 38(1):80-6. PubMed ID: 11921205
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potassium homeostasis in the nervous system of cephalopods and crustacea.
    Pichon Y; Abbott NJ; Lieberman EM; Larmet Y
    J Physiol (Paris); 1987; 82(4):346-56. PubMed ID: 3503934
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regenerating crayfish motor axons assimilate glial cells and sprout in cultured explants.
    Pearce J; Lnenicka GA; Govind CK
    J Comp Neurol; 2003 Sep; 464(4):449-62. PubMed ID: 12900916
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glia-to-axon communication: enrichment of glial proteins transferred to the squid giant axon.
    Sheller RA; Tytell M; Smyers M; Bittner GD
    J Neurosci Res; 1995 Jun; 41(3):324-34. PubMed ID: 7563225
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The developmental expression of K+ channels in retinal glial cells is associated with a decrease of osmotic cell swelling.
    Wurm A; Pannicke T; Iandiev I; Wiedemann P; Reichenbach A; Bringmann A
    Glia; 2006 Oct; 54(5):411-23. PubMed ID: 16886204
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The periaxonal space of crayfish giant axons.
    Shrager P; Starkus JC; Lo MV; Peracchia C
    J Gen Physiol; 1983 Aug; 82(2):221-44. PubMed ID: 6311939
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.