These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 15789515)
1. Modeling recovery of Swedish ecosystems from acidification. Sverdrup H; Martinson L; Alveteg M; Moldan F; Kronnäs V; Munthe J Ambio; 2005 Feb; 34(1):25-31. PubMed ID: 15789515 [TBL] [Abstract][Full Text] [Related]
2. Recovery from acidification of Finnish lakes: regional patterns and relations to emission reduction policy. Forsius M; Vuorenmaa J; Mannio J; Syri S Sci Total Environ; 2003 Jul; 310(1-3):121-32. PubMed ID: 12812736 [TBL] [Abstract][Full Text] [Related]
3. A linked spatial and temporal model of the chemical and biological status of a large, acid-sensitive river network. Evans CD; Cooper DM; Juggins S; Jenkins A; Norris D Sci Total Environ; 2006 Jul; 365(1-3):167-85. PubMed ID: 16580046 [TBL] [Abstract][Full Text] [Related]
4. Critical levels of atmospheric pollution: criteria and concepts for operational modelling of mercury in forest and lake ecosystems. Meili M; Bishop K; Bringmark L; Johansson K; Munthe J; Sverdrup H; de Vries W Sci Total Environ; 2003 Mar; 304(1-3):83-106. PubMed ID: 12663174 [TBL] [Abstract][Full Text] [Related]
5. Time series of long-term annual fluxes in the streamwater of nine forest catchments from the Swedish environmental monitoring program (PMK 5). Fölster J; Bishop K; Krám P; Kvarnäs H; Wilander A Sci Total Environ; 2003 Jul; 310(1-3):113-20. PubMed ID: 12812735 [TBL] [Abstract][Full Text] [Related]
6. Modelling recovery from soil acidification in European forests under climate change. Reinds GJ; Posch M; Leemans R Sci Total Environ; 2009 Oct; 407(21):5663-73. PubMed ID: 19647858 [TBL] [Abstract][Full Text] [Related]
7. Modelling future soil chemistry at a highly polluted forest site at Istebna in Southern Poland using the "SAFE" model. Małek S; Martinson L; Sverdrup H Environ Pollut; 2005 Oct; 137(3):568-73. PubMed ID: 16005767 [TBL] [Abstract][Full Text] [Related]
8. Quantifying the effects of forestry practices on the recovery of upland streams and lochs from acidification. Harriman R; Watt AW; Christie AE; Moore DW; McCartney AG; Taylor EM Sci Total Environ; 2003 Jul; 310(1-3):101-11. PubMed ID: 12812734 [TBL] [Abstract][Full Text] [Related]
9. Modelling changes in forest soil chemistry at 16 Swedish coniferous forest sites following deposition reduction. Belyazid S; Westling O; Sverdrup H Environ Pollut; 2006 Nov; 144(2):596-609. PubMed ID: 16515827 [TBL] [Abstract][Full Text] [Related]
10. The influence of total organic carbon (TOC) on the relationship between acid neutralizing capacity (ANC) and fish status in Norwegian lakes. Lydersen E; Larssen T; Fjeld E Sci Total Environ; 2004 Jun; 326(1-3):63-9. PubMed ID: 15142766 [TBL] [Abstract][Full Text] [Related]
11. Modeling past and future acidification of Swedish lakes. Moldan F; Cosby BJ; Wright RF Ambio; 2013 Sep; 42(5):577-86. PubMed ID: 23288615 [TBL] [Abstract][Full Text] [Related]
12. The present is the key to the past, but what does the future hold for the recovery of surface waters from acidification? Helliwell RC; Simpson GL Water Res; 2010 May; 44(10):3166-80. PubMed ID: 20227743 [TBL] [Abstract][Full Text] [Related]
13. Decreased DOC concentrations in soil water in forested areas in southern Sweden during 1987-2008. Löfgren S; Zetterberg T Sci Total Environ; 2011 Apr; 409(10):1916-26. PubMed ID: 21377191 [TBL] [Abstract][Full Text] [Related]
14. Effects of air pollution on ecosystems and biological diversity in the eastern United States. Lovett GM; Tear TH; Evers DC; Findlay SE; Cosby BJ; Dunscomb JK; Driscoll CT; Weathers KC Ann N Y Acad Sci; 2009 Apr; 1162():99-135. PubMed ID: 19432647 [TBL] [Abstract][Full Text] [Related]
15. Chronic and episodic acidification of Adirondack streams from acid rain in 2003-2005. Lawrence GB; Roy KM; Baldigo BP; Simonin HA; Capone SB; Sutherland JW; Nierzwicki-Bauer SA; Boylen CW J Environ Qual; 2008; 37(6):2264-74. PubMed ID: 18948480 [TBL] [Abstract][Full Text] [Related]
16. The effect of reduced atmospheric deposition on soil and soil solution chemistry at a site subjected to long-term acidification, Nacetín, Czech Republic. Oulehle F; Hofmeister J; Cudlín P; Hruska J Sci Total Environ; 2006 Nov; 370(2-3):532-44. PubMed ID: 16935320 [TBL] [Abstract][Full Text] [Related]
17. Nitrogen deposition and the biodiversity of boreal forests: implications for the nitrogen critical load. Nordin A; Strengbom J; Witzell J; Näsholm T; Ericson L Ambio; 2005 Feb; 34(1):20-4. PubMed ID: 15789514 [TBL] [Abstract][Full Text] [Related]
18. Target loads of atmospheric sulfur deposition for the protection and recovery of acid-sensitive streams in the Southern Blue Ridge Province. Sullivan TJ; Cosby BJ; Jackson WA J Environ Manage; 2011 Nov; 92(11):2953-60. PubMed ID: 21816535 [TBL] [Abstract][Full Text] [Related]
19. Dynamic modelling of the response of UK forest soils to changes in acid deposition using the SAFE model. Langan S; Fransson L; Vanguelova E Sci Total Environ; 2009 Oct; 407(21):5605-19. PubMed ID: 19660786 [TBL] [Abstract][Full Text] [Related]
20. Modeling future acidification and fish populations in Norwegian surface waters. Larssen T; Cosby BJ; Lund E; Wright RF Environ Sci Technol; 2010 Jul; 44(14):5345-51. PubMed ID: 20568744 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]