BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

406 related articles for article (PubMed ID: 15789564)

  • 1. What can a chemist learn from nature's macrocycles?--a brief, conceptual view.
    Wessjohann LA; Ruijter E; Garcia-Rivera D; Brandt W
    Mol Divers; 2005; 9(1-3):171-86. PubMed ID: 15789564
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Macrocycles rapidly produced by multiple multicomponent reactions including bifunctional building blocks (MiBs).
    Wessjohann LA; Ruijter E
    Mol Divers; 2005; 9(1-3):159-69. PubMed ID: 15789563
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Macrocyclic drugs and synthetic methodologies toward macrocycles.
    Yu X; Sun D
    Molecules; 2013 May; 18(6):6230-68. PubMed ID: 23708234
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nature Builds Macrocycles and Heterocycles into Its Antimicrobial Frameworks: Deciphering Biosynthetic Strategy.
    Walsh CT
    ACS Infect Dis; 2018 Sep; 4(9):1283-1299. PubMed ID: 29993235
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strategies for the Diversity-Oriented Synthesis of Macrocycles.
    Mortensen KT; Osberger TJ; King TA; Sore HF; Spring DR
    Chem Rev; 2019 Sep; 119(17):10288-10317. PubMed ID: 31244001
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Building upon Nature's Framework: Overview of Key Strategies Toward Increasing Drug-Like Properties of Natural Product Cyclopeptides and Macrocycles.
    Blanco MJ
    Methods Mol Biol; 2019; 2001():203-233. PubMed ID: 31134573
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel complexity-to-diversity strategy for the diversity-oriented synthesis of structurally diverse and complex macrocycles from quinine.
    Ciardiello JJ; Stewart HL; Sore HF; Galloway WRJD; Spring DR
    Bioorg Med Chem; 2017 Jun; 25(11):2825-2843. PubMed ID: 28283333
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent Advances in Macrocyclic Drugs and Microwave-Assisted and/or Solid-Supported Synthesis of Macrocycles.
    Sun D
    Molecules; 2022 Feb; 27(3):. PubMed ID: 35164274
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advancing chemistry and biology through diversity-oriented synthesis of natural product-like libraries.
    Shang S; Tan DS
    Curr Opin Chem Biol; 2005 Jun; 9(3):248-58. PubMed ID: 15939326
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shape-persistent aromatic amide oligomers: new tools for supramolecular chemistry.
    Li ZT; Hou JL; Li C; Yi HP
    Chem Asian J; 2006 Dec; 1(6):766-78. PubMed ID: 17441120
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA-templated organic synthesis: nature's strategy for controlling chemical reactivity applied to synthetic molecules.
    Li X; Liu DR
    Angew Chem Int Ed Engl; 2004 Sep; 43(37):4848-70. PubMed ID: 15372570
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diversity of nature's assembly lines - recent discoveries in non-ribosomal peptide synthesis.
    Payne JA; Schoppet M; Hansen MH; Cryle MJ
    Mol Biosyst; 2016 Dec; 13(1):9-22. PubMed ID: 27853778
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design, Properties and Recent Application of Macrocycles in Medicinal Chemistry.
    Ermert P
    Chimia (Aarau); 2017 Oct; 71(10):678-702. PubMed ID: 29070413
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A diversity-oriented synthesis approach to macrocycles via oxidative ring expansion.
    Kopp F; Stratton CF; Akella LB; Tan DS
    Nat Chem Biol; 2012 Mar; 8(4):358-65. PubMed ID: 22406518
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diversity oriented synthesis: a challenge for synthetic chemists.
    Bender A; Fergus S; Galloway WR; Glansdorp FG; Marsden DM; Nicholson RL; Spandl RJ; Thomas GL; Wyatt EE; Glen RC; Spring DR
    Ernst Schering Res Found Workshop; 2006; (58):47-60. PubMed ID: 16708998
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chiral allylic and allenic metal reagents for organic synthesis.
    Marshall JA
    J Org Chem; 2007 Oct; 72(22):8153-66. PubMed ID: 17595141
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The exploration of macrocycles for drug discovery--an underexploited structural class.
    Driggers EM; Hale SP; Lee J; Terrett NK
    Nat Rev Drug Discov; 2008 Jul; 7(7):608-24. PubMed ID: 18591981
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Epothilones as lead structures for the synthesis-based discovery of new chemotypes for microtubule stabilization.
    Feyen F; Cachoux F; Gertsch J; Wartmann M; Altmann KH
    Acc Chem Res; 2008 Jan; 41(1):21-31. PubMed ID: 18159935
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical Editing of Macrocyclic Natural Products and Kinetic Profiling Reveal Slow, Tight-Binding Histone Deacetylase Inhibitors with Picomolar Affinities.
    Kitir B; Maolanon AR; Ohm RG; Colaço AR; Fristrup P; Madsen AS; Olsen CA
    Biochemistry; 2017 Sep; 56(38):5134-5146. PubMed ID: 28858522
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A DNA-Encoded Chemical Library Incorporating Elements of Natural Macrocycles.
    Stress CJ; Sauter B; Schneider LA; Sharpe T; Gillingham D
    Angew Chem Int Ed Engl; 2019 Jul; 58(28):9570-9574. PubMed ID: 30938482
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.