These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 15789736)

  • 21. Optical emission generated from silicon under dual-wavelength femtosecond double-pulse laser irradiation.
    Chen A; Wang Y; Sui L; Li S; Li S; Liu D; Jiang Y; Jin M
    Opt Express; 2015 Sep; 23(19):24648-56. PubMed ID: 26406666
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Generation of 11-fs pulses from a self-mode-locked Ti:sapphire laser.
    Asaki MT; Huang CP; Garvey D; Zhou J; Kapteyn HC; Murnane MM
    Opt Lett; 1993 Jun; 18(12):977-9. PubMed ID: 19823264
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Continuously self-mode-locked Ti:sapphire laser that produces sub-50-fs pulses.
    Rizvi NH; French PM; Taylor JR
    Opt Lett; 1992 Feb; 17(4):279-81. PubMed ID: 19784301
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Low-threshold self-starting femtosecond Ti:sapphire laser.
    Ling W; Jia Y; Sun J; Wang Z; Wei Z
    Appl Opt; 2006 Apr; 45(11):2495-8. PubMed ID: 16623246
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Novel method for carrier-envelope-phase stabilization of femtosecond laser pulses.
    Lee YS; Sung J; Nam C; Yu T; Hong KH
    Opt Express; 2005 Apr; 13(8):2969-76. PubMed ID: 19495193
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High-power second-harmonic generation with picosecond and hundreds-of-picosecond pulses of a cw mode-locked Ti:sapphire laser.
    Watanabe M; Ohmukai R; Hayasaka K; Imajo H; Urabe S
    Opt Lett; 1994 May; 19(9):637-9. PubMed ID: 19844397
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Simple method to start and maintain self-mode-locking of a Ti:sapphire laser.
    Liu YM; Sun KW; Prucnal PR; Lyon SA
    Opt Lett; 1992 Sep; 17(17):1219-21. PubMed ID: 19798139
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Two-color facility based on a broadly tunable infrared free-electron laser and a subpicosecond-synchronized 10-fs-Ti:sapphire laser.
    Knippels GM; van de Pol MJ; Pellemans HP; Planken PC; van der Meer AF
    Opt Lett; 1998 Nov; 23(22):1754-6. PubMed ID: 18091904
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Accurate all-optical synchronization of 1064 nm pulses with 794nm femtosecond pulses for optical parametric chirped pulse amplification.
    Xu S; Zhai H; Wu K; Peng Y; Wu J; Zeng H
    Opt Express; 2006 Mar; 14(6):2487-96. PubMed ID: 19503588
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Design and optimization of the seed pulse generation scheme for precise beam synchronization in the Xingguang-III laser.
    Zhou S; Zeng X; Zhou K; Huang X; Wang X; Wang X; Xie N; Jiang D; Wu Z; Zhao L; Wen J; Zhang Y; Huang Z; Sun L; Guo Y; Li Q; Zhu Q; Su J; Jing F
    Appl Opt; 2016 Oct; 55(28):8003-8006. PubMed ID: 27828038
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nearly quantum-limited timing jitter in a self-mode-locked Ti:sapphire laser.
    Spence DE; Dudley JM; Lamb K; Sleat WE; Sibbett W
    Opt Lett; 1994 Apr; 19(7):481-3. PubMed ID: 19844347
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Femtosecond Ti:sapphire ring laser with a 2-GHz repetition rate and its application in time-resolved spectroscopy.
    Bartels A; Dekorsy T; Kurz H
    Opt Lett; 1999 Jul; 24(14):996-8. PubMed ID: 18073921
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Second-harmonic generation of amplified femtosecond Ti:sapphire laser pulses.
    Krylov V; Rebane A; Kalintsev AG; Schwoerer H; Wild UP
    Opt Lett; 1995 Jan; 20(2):198-200. PubMed ID: 19859133
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ultrafast diode-pumped Ti:sapphire laser with broad tunability.
    Coyle JCE; Kemp AJ; Hopkins JM; Lagatsky AA
    Opt Express; 2018 Mar; 26(6):6826-6832. PubMed ID: 29609370
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Narrow-bandwidth tunable picosecond pulses in the visible produced by noncollinear optical parametric amplification with a chirped blue pump.
    Co DT; Lockard JV; McCamant DW; Wasielewski MR
    Appl Opt; 2010 Apr; 49(10):1880-5. PubMed ID: 20357874
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Femtosecond laser pulse generation with self-similar amplification of picosecond laser pulses.
    Song H; Liu B; Chen W; Li Y; Song Y; Wang S; Chai L; Wang C; Hu M
    Opt Express; 2018 Oct; 26(20):26411-26421. PubMed ID: 30469729
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Noncollinear parametric generation in LiIO(3) and beta-barium borate by frequency-doubled femtosecond Ti:sapphire laser pulses.
    Krylov V; Kalintsev A; Rebane A; Erni D; Wild UP
    Opt Lett; 1995 Jan; 20(2):151-3. PubMed ID: 19859117
    [TBL] [Abstract][Full Text] [Related]  

  • 38. All-optical phase locking of two femtosecond Ti:sapphire lasers: a passive coupling mechanism beyond the slowly varying amplitude approximation.
    Betz M; Sotier F; Tauser F; Trumm S; Laubereau A; Leitenstorfer A
    Opt Lett; 2004 Mar; 29(6):629-31. PubMed ID: 15035493
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Long-term optical phase locking between femtosecond Ti:sapphire and Cr:forsterite lasers.
    Kobayashi Y; Yoshitomi D; Kakehata M; Takada H; Torizuka K
    Opt Lett; 2005 Sep; 30(18):2496-8. PubMed ID: 16196364
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Passive mode locking in a Ti:sapphire laser using a single-walled carbon nanotube saturable absorber at a wavelength of 810 nm.
    Khudyakov DV; Lobach AS; Nadtochenko VA
    Opt Lett; 2010 Aug; 35(16):2675-7. PubMed ID: 20717420
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.