These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 15791007)

  • 21. Weak polar interactions confer albumin binding site selectivity for haloether anesthetics.
    Liu R; Eckenhoff RG
    Anesthesiology; 2005 Apr; 102(4):799-805. PubMed ID: 15791110
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Volatile anesthetic binding to proteins is influenced by solvent and aliphatic residues.
    Streiff JH; Jones KA
    J Chem Inf Model; 2008 Oct; 48(10):2066-73. PubMed ID: 18808106
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Design and biophysical characterization of a monomeric four-alpha-helix bundle protein Aα₄ with affinity for the volatile anesthetic halothane.
    Morstadt L; Meng QC; Johansson JS
    Biochim Biophys Acta; 2012 Dec; 1824(12):1409-15. PubMed ID: 22750405
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A model membrane protein for binding volatile anesthetics.
    Ye S; Strzalka J; Churbanova IY; Zheng S; Johansson JS; Blasie JK
    Biophys J; 2004 Dec; 87(6):4065-74. PubMed ID: 15465862
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Interaction between anesthetic molecules and their binding sites must be far more complex.
    Ishikawa S
    Anesthesiology; 2005 Nov; 103(5):1102; author reply 1102. PubMed ID: 16249691
    [No Abstract]   [Full Text] [Related]  

  • 26. Computational studies on the interactions of inhalational anesthetics with proteins.
    Vemparala S; Domene C; Klein ML
    Acc Chem Res; 2010 Jan; 43(1):103-10. PubMed ID: 19788306
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Monolayers of a model anesthetic-binding membrane protein: formation, characterization, and halothane-binding affinity.
    Churbanova IY; Tronin A; Strzalka J; Gog T; Kuzmenko I; Johansson JS; Blasie JK
    Biophys J; 2006 May; 90(9):3255-66. PubMed ID: 16473900
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Prediction of volatile anesthetic binding sites in proteins.
    Streiff JH; Allen TW; Atanasova E; Juranic N; Macura S; Penheiter AR; Jones KA
    Biophys J; 2006 Nov; 91(9):3405-14. PubMed ID: 16877516
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Computer simulation study of synthetic 4-helix bundle that binds halothane.
    Woska AB; Klein ML; Scharf D
    Toxicol Lett; 1998 Nov; 100-101():377-85. PubMed ID: 10049168
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Four-alpha-helix bundle with designed anesthetic binding pockets. Part II: halothane effects on structure and dynamics.
    Cui T; Bondarenko V; Ma D; Canlas C; Brandon NR; Johansson JS; Xu Y; Tang P
    Biophys J; 2008 Jun; 94(11):4464-72. PubMed ID: 18310239
    [TBL] [Abstract][Full Text] [Related]  

  • 31. How water interacts with halogenated anesthetics: the rotational spectrum of isoflurane-water.
    Gou Q; Feng G; Evangelisti L; Vallejo-López M; Spada L; Lesarri A; Cocinero EJ; Caminati W
    Chemistry; 2014 Feb; 20(7):1980-4. PubMed ID: 24403206
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Partitioning of anesthetics into a lipid bilayer and their interaction with membrane-bound peptide bundles.
    Vemparala S; Saiz L; Eckenhoff RG; Klein ML
    Biophys J; 2006 Oct; 91(8):2815-25. PubMed ID: 16877515
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Recognition of anesthetic barbiturates by a protein binding site: a high resolution structural analysis.
    Oakley S; Vedula LS; Bu W; Meng QC; Xi J; Liu R; Eckenhoff RG; Loll PJ
    PLoS One; 2012; 7(2):e32070. PubMed ID: 22359658
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Photoactive analogues of the haloether anesthetics provide high-resolution features from low-affinity interactions.
    Xi J; Liu R; Rossi MJ; Yang J; Loll PJ; Dailey WP; Eckenhoff RG
    ACS Chem Biol; 2006 Jul; 1(6):377-84. PubMed ID: 17163775
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Absence of abundant saturable binding sites for halothane or isoflurane in rabbit brain: inhaled anesthetics obey Henry's law.
    Lockhart SH; Eger EI
    Anesth Analg; 1990 Jul; 71(1):70-2. PubMed ID: 2363532
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Anesthetic interaction with ketosteroid isomerase: insights from molecular dynamics simulations.
    Yonkunas MJ; Xu Y; Tang P
    Biophys J; 2005 Oct; 89(4):2350-6. PubMed ID: 16040747
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A guest molecule-host cavity fitting algorithm to mine PDB for small molecule targets.
    Byrem WC; Armstead SC; Kobayashi S; Eckenhoff RG; Eckmann DM
    Biochim Biophys Acta; 2006 Aug; 1764(8):1320-4. PubMed ID: 16904958
    [TBL] [Abstract][Full Text] [Related]  

  • 38. X-Ray Crystallographic Studies for Revealing Binding Sites of General Anesthetics in Pentameric Ligand-Gated Ion Channels.
    Chen Q; Xu Y; Tang P
    Methods Enzymol; 2018; 603():21-47. PubMed ID: 29673527
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular interactions between inhaled anesthetics and proteins.
    Eckenhoff RG; Johansson JS
    Pharmacol Rev; 1997 Dec; 49(4):343-67. PubMed ID: 9443162
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An atomistic model for simulations of the general anesthetic isoflurane.
    Hénin J; Brannigan G; Dailey WP; Eckenhoff R; Klein ML
    J Phys Chem B; 2010 Jan; 114(1):604-12. PubMed ID: 19924847
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.