These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 15791301)

  • 1. Remarkably improved complexation of a bisparaquat by formation of a pseudocryptand-based [3]pseudorotaxane.
    Huang F; Guzei IA; Jones JW; Gibson HW
    Chem Commun (Camb); 2005 Apr; (13):1693-5. PubMed ID: 15791301
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pseudocryptand-type [3]pseudorotaxane and "hook-ring" polypseudo[2]catenane based on a bis(m-phenylene)-32-crown-10 derivative and bisparaquat derivatives.
    Niu Z; Slebodnick C; Gibson HW
    Org Lett; 2011 Sep; 13(17):4616-9. PubMed ID: 21812454
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A cryptand/bisparaquat [3]pseudorotaxane by cooperative complexation.
    Huang F; Fronczek FR; Gibson HW
    J Am Chem Soc; 2003 Aug; 125(31):9272-3. PubMed ID: 12889938
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A supramolecular poly[3]pseudorotaxane by self-assembly of a homoditopic cylindrical bis(crown ether) host and a bisparaquat derivative.
    Huang F; Gibson HW
    Chem Commun (Camb); 2005 Apr; (13):1696-8. PubMed ID: 15791302
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The first [2]pseudorotaxane and the first pseudocryptand-type poly[2]pseudorotaxane based on bis(meta-phenylene)-32-crown-10 and paraquat derivatives.
    Niu Z; Slebodnick C; Bonrad K; Huang F; Gibson HW
    Org Lett; 2011 Jun; 13(11):2872-5. PubMed ID: 21545087
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pseudocryptand-type [2]pseudorotaxanes based on bis(meta-phenylene)-32-crown-10 derivatives and paraquats with remarkably improved association constants.
    Niu Z; Slebodnick C; Schoonover D; Azurmendi H; Harich K; Gibson HW
    Org Lett; 2011 Aug; 13(15):3992-5. PubMed ID: 21711033
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Supramolecular Pseudorotaxane Polymers from Biscryptands and Bisparaquats.
    Price TL; Gibson HW
    J Am Chem Soc; 2018 Mar; 140(12):4455-4465. PubMed ID: 29510043
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of a polyrotaxane-based macroporous polymer as stationary phase for capillary electrochromatography via host-guest complexation of N,N '-ethylenedianilinediacrylamide with statistically methylated beta-cyclodextrin.
    Wahl A; Al-Rimawi F; Schnell I; Kornysova O; Maruska A; Pyell U
    J Sep Sci; 2008 May; 31(9):1519-28. PubMed ID: 18428178
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [2]Pseudorotaxane and [2]rotaxane molecular shuttles: self-assembly through second-sphere coordination of thiocyanate ligands.
    Blight BA; Wei X; Wisner JA; Jennings MC
    Inorg Chem; 2007 Oct; 46(21):8445-7. PubMed ID: 17880063
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anion-controlled ion-pair recognition of paraquat by a bis(m-phenylene)-32-crown-10 derivative heteroditopic host.
    Zhu K; Li S; Wang F; Huang F
    J Org Chem; 2009 Feb; 74(3):1322-8. PubMed ID: 19125564
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Supramolecular control of a fast and reversible Diels-Alder reaction.
    Masci B; Pasquale S; Thuéry P
    Org Lett; 2008 Nov; 10(21):4835-8. PubMed ID: 18847273
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heat-capacity changes in host-guest complexation by Coulomb interactions in aqueous solution.
    Kano K; Ishida Y; Kitagawa K; Yasuda M; Watanabe M
    Chem Asian J; 2007 Oct; 2(10):1305-13. PubMed ID: 17668911
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Paraquat substituent effect on complexation with a dibenzo-24-crown-8-based cryptand.
    Zhang J; Huang F; Li N; Wang H; Gibson HW; Gantzel P; Rheingold AL
    J Org Chem; 2007 Nov; 72(23):8935-8. PubMed ID: 17935351
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Host-guest complexation affected by pH and length of spacer for hydroxyazobenzene-modified cyclodextrins.
    Kuwabara T; Shiba K; Nakajima H; Ozawa M; Miyajima N; Hosoda M; Kuramoto N; Suzuki Y
    J Phys Chem A; 2006 Dec; 110(50):13521-9. PubMed ID: 17165879
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nature of supramolecular complexes controlled by the structure of the guest molecules: formation of octa acid based capsuleplex and cavitandplex.
    Jayaraj N; Zhao Y; Parthasarathy A; Porel M; Liu RS; Ramamurthy V
    Langmuir; 2009 Sep; 25(18):10575-86. PubMed ID: 19496576
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Introducing negative charges into bis-p-phenylene crown ethers: a study of bipyridinium-based [2]pseudorotaxanes and [2]rotaxanes.
    Lestini E; Nikitin K; Müller-Bunz H; Fitzmaurice D
    Chemistry; 2008; 14(4):1095-106. PubMed ID: 18058954
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel triptycene-based cylindrical macrotricyclic host: synthesis and complexation with paraquat derivatives.
    Zong QS; Chen CF
    Org Lett; 2006 Jan; 8(2):211-4. PubMed ID: 16408877
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A triptycene-based bis(crown ether) host: complexation with both paraquat derivatives and dibenzylammonium salts.
    Han T; Chen CF
    Org Lett; 2006 Mar; 8(6):1069-72. PubMed ID: 16524270
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of bis(m-phenylene)-32-crown-10-based discrete rhomboids driven by metal-coordination and complexation with paraquat.
    Zhu K; He J; Li S; Liu M; Wang F; Zhang M; Abliz Z; Yang HB; Li N; Huang F
    J Org Chem; 2009 May; 74(10):3905-12. PubMed ID: 19382765
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancement of energy utilization in light-harvesting dendrimers by the pseudorotaxane formation at periphery.
    Zeng Y; Li Y; Li M; Yang G; Li Y
    J Am Chem Soc; 2009 Jul; 131(25):9100-6. PubMed ID: 19480456
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.