BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

60 related articles for article (PubMed ID: 15791409)

  • 1. Sequence-based design of single-copy genomic DNA probes for fluorescence in situ hybridization.
    Rogan PK; Cazcarro PM; Knoll JH
    Genome Res; 2001 Jun; 11(6):1086-94. PubMed ID: 11381034
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative Distribution of Repetitive Sequences in the Karyotypes of
    Roco ÁS; Liehr T; Ruiz-García A; Guzmán K; Bullejos M
    Genes (Basel); 2021 Apr; 12(5):. PubMed ID: 33919402
    [No Abstract]   [Full Text] [Related]  

  • 3. Spectral karyotyping analysis of human and mouse chromosomes.
    Padilla-Nash HM; Barenboim-Stapleton L; Difilippantonio MJ; Ried T
    Nat Protoc; 2006; 1(6):3129-42. PubMed ID: 17406576
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tigerfish designs oligonucleotide-based in situ hybridization probes targeting intervals of highly repetitive DNA at the scale of genomes.
    Aguilar R; Camplisson CK; Lin Q; Miga KH; Noble WS; Beliveau BJ
    Nat Commun; 2024 Feb; 15(1):1027. PubMed ID: 38310092
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expanding probe repertoire and improving reproducibility in human genomic hybridization.
    Dorman SN; Shirley BC; Knoll JH; Rogan PK
    Nucleic Acids Res; 2013 Apr; 41(7):e81. PubMed ID: 23376933
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ladder-like amplification of the type I interferon gene cluster in the human osteosarcoma cell line MG63.
    Marella NV; Zeitz MJ; Malyavantham KS; Pliss A; Matsui S; Goetze S; Bode J; Raska I; Berezney R
    Chromosome Res; 2008; 16(8):1177-92. PubMed ID: 19005637
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Array painting: a protocol for the rapid analysis of aberrant chromosomes using DNA microarrays.
    Gribble SM; Ng BL; Prigmore E; Fitzgerald T; Carter NP
    Nat Protoc; 2009; 4(12):1722-36. PubMed ID: 19893508
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plant Chromosome-Specific Probes by Microdissection of a Single Chromosome: Is That a Reality?
    Soares FAF; Carvalho CR; Sattler MC; Silva JC; Pinto DEE; Passamani PZ; Silva AJ; Clarindo WR
    Front Plant Sci; 2020; 11():334. PubMed ID: 32273878
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tigerfish designs oligonucleotide-based
    Aguilar R; Camplisson CK; Lin Q; Miga KH; Noble WS; Beliveau BJ
    bioRxiv; 2023 Mar; ():. PubMed ID: 36945528
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct detection of alpha satellite DNA with single-base resolution by using abasic Peptide Nucleic Acids and Fluorescent in situ Hybridization.
    Robles-Remacho A; Luque-Gonzalez MA; López-Delgado FJ; Guardia-Monteagudo JJ; Fara MA; Pernagallo S; Sanchez-Martin RM; Diaz-Mochon JJ
    Biosens Bioelectron; 2023 Jan; 219():114770. PubMed ID: 36270082
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Template-directed ligation on repetitive DNA sequences: a chemical method to probe the length of Huntington DNA.
    Kern A; Seitz O
    Chem Sci; 2015 Jan; 6(1):724-728. PubMed ID: 28706635
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of Fluorescence In Situ Hybridization (FISH) in Oral Microbial Detection.
    Gu J; Wang H; Zhang M; Xiong Y; Yang L; Ren B; Huang R
    Pathogens; 2022 Dec; 11(12):. PubMed ID: 36558784
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of DNA fusion junctions for BCR-ABL translocations by Anchored ChromPET.
    Shibata Y; Malhotra A; Dutta A
    Genome Med; 2010 Sep; 2(9):70. PubMed ID: 20860819
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microdissection and chromosome painting of X and B chromosomes in Locusta migratoria.
    Teruel M; Cabrero J; Montiel EE; Acosta MJ; Sánchez A; Camacho JP
    Chromosome Res; 2009; 17(1):11-8. PubMed ID: 19105034
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polymerase chain reaction-based suppression of repetitive sequences in whole chromosome painting probes for FISH.
    Dugan LC; Pattee MS; Williams J; Eklund M; Sorensen K; Bedford JS; Christian AT
    Chromosome Res; 2005; 13(1):27-32. PubMed ID: 15791409
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of the human myeloid leukemia-derived cell line GF-D8 by multiplex fluorescence in situ hybridization, subtelomeric probes, and comparative genomic hybridization.
    Tosi S; Giudici G; Rambaldi A; Scherer SW; Bray-Ward P; Dirscherl L; Biondi A; Kearney L
    Genes Chromosomes Cancer; 1999 Mar; 24(3):213-21. PubMed ID: 10451701
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distribution of repetitive DNA sequences in chromosomes of five opisthorchid species (Trematoda, Opisthorchiidae).
    Zadesenets KS; Karamysheva TV; Katokhin AV; Mordvinov VA; Rubtsov NB
    Parasitol Int; 2012 Mar; 61(1):84-6. PubMed ID: 21791251
    [TBL] [Abstract][Full Text] [Related]  

  • 18. IPM-FISH, a new M-FISH approach using IRS-PCR painting probes: application to the analysis of seven human prostate cell lines.
    Aurich-Costa J; Vannier A; Grégoire E; Nowak F; Cherif D
    Genes Chromosomes Cancer; 2001 Feb; 30(2):143-60. PubMed ID: 11135431
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Selective chromosome painting using in situ hybridization].
    Pérez Losada A; Woessner S; Solé F; Caballín MR; Florensa L
    Sangre (Barc); 1993 Apr; 38(2):151-4. PubMed ID: 8516730
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.