These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
297 related articles for article (PubMed ID: 15791797)
1. Respirometry for assessing the biodegradation of petroleum hydrocarbons. Plaza G; Ulfig K; Worsztynowicz A; Malina G; Krzeminska B; Brigmon RL Environ Technol; 2005 Feb; 26(2):161-9. PubMed ID: 15791797 [TBL] [Abstract][Full Text] [Related]
2. The application of bioassays as indicators of petroleum-contaminated soil remediation. Płaza G; Nałecz-Jawecki G; Ulfig K; Brigmon RL Chemosphere; 2005 Apr; 59(2):289-96. PubMed ID: 15722101 [TBL] [Abstract][Full Text] [Related]
3. Assessment of genotoxic activity of petroleum hydrocarbon-bioremediated soil. Płaza G; Nałecz-Jawecki G; Ulfig K; Brigmon RL Ecotoxicol Environ Saf; 2005 Nov; 62(3):415-20. PubMed ID: 16216636 [TBL] [Abstract][Full Text] [Related]
4. Detailed analysis of petroleum hydrocarbon attenuation in biopiles by high-performance liquid chromatography followed by comprehensive two-dimensional gas chromatography. Mao D; Lookman R; Van De Weghe H; Van Look D; Vanermen G; De Brucker N; Diels L J Chromatogr A; 2009 Feb; 1216(9):1524-7. PubMed ID: 19185306 [TBL] [Abstract][Full Text] [Related]
5. Pilot-scale bioremediation of a petroleum hydrocarbon-contaminated clayey soil from a sub-Arctic site. Akbari A; Ghoshal S J Hazard Mater; 2014 Sep; 280():595-602. PubMed ID: 25218258 [TBL] [Abstract][Full Text] [Related]
6. Biodegradation of petroleum hydrocarbons in contaminated clayey soils from a sub-arctic site: the role of aggregate size and microstructure. Chang W; Akbari A; Snelgrove J; Frigon D; Ghoshal S Chemosphere; 2013 Jun; 91(11):1620-6. PubMed ID: 23453601 [TBL] [Abstract][Full Text] [Related]
7. Ex situ bioremediation of oil-contaminated soil. Lin TC; Pan PT; Cheng SS J Hazard Mater; 2010 Apr; 176(1-3):27-34. PubMed ID: 20053499 [TBL] [Abstract][Full Text] [Related]
8. Petroleum hydrocarbon biodegradation under seasonal freeze-thaw soil temperature regimes in contaminated soils from a sub-Arctic site. Chang W; Klemm S; Beaulieu C; Hawari J; Whyte L; Ghoshal S Environ Sci Technol; 2011 Feb; 45(3):1061-6. PubMed ID: 21194195 [TBL] [Abstract][Full Text] [Related]
9. Enhanced bioremediation of nutrient-amended, petroleum hydrocarbon-contaminated soils over a cold-climate winter: The rate and extent of hydrocarbon biodegradation and microbial response in a pilot-scale biopile subjected to natural seasonal freeze-thaw temperatures. Kim J; Lee AH; Chang W Sci Total Environ; 2018 Jan; 612():903-913. PubMed ID: 28886542 [TBL] [Abstract][Full Text] [Related]
10. Assessment of five bioaccessibility assays for predicting the efficacy of petroleum hydrocarbon biodegradation in aged contaminated soils. Dandie CE; Weber J; Aleer S; Adetutu EM; Ball AS; Juhasz AL Chemosphere; 2010 Nov; 81(9):1061-8. PubMed ID: 20947131 [TBL] [Abstract][Full Text] [Related]
11. Relationship between soil microbial diversity and bioremediation process at an oil refinery. Płaza G; Ulfig K; Brigmon RL Acta Microbiol Pol; 2003; 52(2):173-82. PubMed ID: 14594404 [TBL] [Abstract][Full Text] [Related]
12. Bioremediation of benzene, toluene, ethylbenzene, xylenes-contaminated soil: a biopile pilot experiment. Genovese M; Denaro R; Cappello S; Di Marco G; La Spada G; Giuliano L; Genovese L; Yakimov MM J Appl Microbiol; 2008 Nov; 105(5):1694-702. PubMed ID: 19149767 [TBL] [Abstract][Full Text] [Related]
13. Hydrocarbon biodegradation in oxygen-limited sequential batch reactors by consortium from weathered, oil-contaminated soil. Medina-Moreno SA; Huerta-Ochoa S; Gutiérrez-Rojas M Can J Microbiol; 2005 Mar; 51(3):231-9. PubMed ID: 15920621 [TBL] [Abstract][Full Text] [Related]
14. Determination of microbial carbon sources and cycling during remediation of petroleum hydrocarbon impacted soil using natural abundance (14)C analysis of PLFA. Cowie BR; Greenberg BM; Slater GF Environ Sci Technol; 2010 Apr; 44(7):2322-7. PubMed ID: 20196610 [TBL] [Abstract][Full Text] [Related]
15. Bioremediation of a weathered and a recently oil-contaminated soils from Brazil: a comparison study. Trindade PV; Sobral LG; Rizzo AC; Leite SG; Soriano AU Chemosphere; 2005 Jan; 58(4):515-22. PubMed ID: 15620743 [TBL] [Abstract][Full Text] [Related]
16. Remediation of petroleum contaminated soils by joint action of Pharbitis nil L. and its microbial community. Zhang Z; Zhou Q; Peng S; Cai Z Sci Total Environ; 2010 Oct; 408(22):5600-5. PubMed ID: 20810149 [TBL] [Abstract][Full Text] [Related]
17. On site bioremediation of hydrocarbon-contaminated Arctic tundra soils in inoculated biopiles. Mohn WW; Radziminski CZ; Fortin MC; Reimer KJ Appl Microbiol Biotechnol; 2001 Oct; 57(1-2):242-7. PubMed ID: 11693928 [TBL] [Abstract][Full Text] [Related]
18. Promoted biodegradation and microbiological effects of petroleum hydrocarbons by Impatiens balsamina L. with strong endurance. Cai Z; Zhou Q; Peng S; Li K J Hazard Mater; 2010 Nov; 183(1-3):731-7. PubMed ID: 20724074 [TBL] [Abstract][Full Text] [Related]
19. Fate and transport of petroleum hydrocarbons in engineered biopiles in polar regions. Whelan MJ; Coulon F; Hince G; Rayner J; McWatters R; Spedding T; Snape I Chemosphere; 2015 Jul; 131():232-40. PubMed ID: 25563162 [TBL] [Abstract][Full Text] [Related]
20. Effect of nickel on the mineralization of hydrocarbons by indigenous microbiota in Kuwait soils. Al-Saleh ES; Obuekwe C J Basic Microbiol; 2009 Jun; 49(3):256-63. PubMed ID: 19219899 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]