BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 15792237)

  • 1. Countergradient variation in the sexual coloration of guppies (Poecilia reticulata): drosopterin synthesis balances carotenoid availability.
    Grether GF; Cummings ME; Hudon J
    Evolution; 2005 Jan; 59(1):175-88. PubMed ID: 15792237
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carotenoid scarcity, synthetic pteridine pigments and the evolution of sexual coloration in guppies (Poecilia reticulata).
    Grether GF; Hudon J; Endler JA
    Proc Biol Sci; 2001 Jun; 268(1473):1245-53. PubMed ID: 11410150
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Female mate preference explains countergradient variation in the sexual coloration of guppies (Poecilia reticulata).
    Deere KA; Grether GF; Sun A; Sinsheimer JS
    Proc Biol Sci; 2012 May; 279(1734):1684-90. PubMed ID: 22113030
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Marginal differentiation between the sexual and general carotenoid pigmentation of guppies (Poecilia reticulata) and a possible visual explanation.
    Hudon J; Grether GF; Millie DF
    Physiol Biochem Zool; 2003; 76(6):776-90. PubMed ID: 14988793
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sex-specific effects of carotenoid intake on the immunological response to allografts in guppies (Poecilia reticulata).
    Grether GF; Kasahara S; Kolluru GR; Cooper EL
    Proc Biol Sci; 2004 Jan; 271(1534):45-9. PubMed ID: 15002770
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carotenoid limitation and mate preference evolution: a test of the indicator hypothesis in guppies (Poecilia reticulata).
    Grether GF
    Evolution; 2000 Oct; 54(5):1712-24. PubMed ID: 11108598
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pteridine, not carotenoid, pigments underlie the female-specific orange ornament of striped plateau lizards (Sceloporus virgatus).
    Weiss SL; Foerster K; Hudon J
    Comp Biochem Physiol B Biochem Mol Biol; 2012 Feb; 161(2):117-23. PubMed ID: 22036614
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relationship between algal-foraging ability and expression of sexually selected traits in male guppies.
    Karino K; Shinjo S
    Zoolog Sci; 2007 Jun; 24(6):571-6. PubMed ID: 17867858
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carotenoid availability affects the development of a colour-based mate preference and the sensory bias to which it is genetically linked.
    Grether GF; Kolluru GR; Rodd FH; de la Cerda J; Shimazaki K
    Proc Biol Sci; 2005 Oct; 272(1577):2181-8. PubMed ID: 16191629
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Colourful male guppies produce faster and more viable sperm.
    Locatello L; Rasotto MB; Evans JP; Pilastro A
    J Evol Biol; 2006 Sep; 19(5):1595-602. PubMed ID: 16910988
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carotenoid accumulation in the tissues of zebra finches: predictors of integumentary pigmentation and implications for carotenoid allocation strategies.
    McGraw KJ; Toomey MB
    Physiol Biochem Zool; 2010; 83(1):97-109. PubMed ID: 19929687
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Frequency-dependent survival in natural guppy populations.
    Olendorf R; Rodd FH; Punzalan D; Houde AE; Hurt C; Reznick DN; Hughes KA
    Nature; 2006 Jun; 441(7093):633-6. PubMed ID: 16738659
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic and environmental effects on secondary sex traits in guppies (Poecilia reticulata).
    Hughes KA; Rodd FH; Reznick DN
    J Evol Biol; 2005 Jan; 18(1):35-45. PubMed ID: 15669959
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Countergradient variation and secondary sexual color: phenotypic convergence promotes genetic divergence in carotenoid use between sympatric anadromous and nonanadromous morphs of sockeye salmon (Oncorhynchus nerka).
    Craig JK; Foote CJ
    Evolution; 2001 Feb; 55(2):380-91. PubMed ID: 11308094
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interspecific variation in dietary carotenoid assimilation in birds: links to phylogeny and color ornamentation.
    McGraw KJ
    Comp Biochem Physiol B Biochem Mol Biol; 2005 Oct; 142(2):245-50. PubMed ID: 16129640
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Testing the carotenoid trade-off hypothesis in the polychromatic Midas cichlid, Amphilophus citrinellus.
    Lin SM; Nieves-Puigdoller K; Brown AC; McGraw KJ; Clotfelter ED
    Physiol Biochem Zool; 2010; 83(2):333-42. PubMed ID: 20151818
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interspecific variation in the use of carotenoid-based coloration in birds: diet, life history and phylogeny.
    Olson VA; Owens IP
    J Evol Biol; 2005 Nov; 18(6):1534-46. PubMed ID: 16313466
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How dewlap color reflects its carotenoid and pterin content in male and female brown anoles (Norops sagrei).
    Steffen JE; McGraw KJ
    Comp Biochem Physiol B Biochem Mol Biol; 2009 Nov; 154(3):334-40. PubMed ID: 19647090
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of carotenoid acquisition and utilization on the maintenance of species-typical plumage pigmentation in male American goldfinches (Carduelis tristis) and northern cardinals (Cardinalis cardinalis).
    McGraw KJ; Hill GE; Stradi R; Parker RS
    Physiol Biochem Zool; 2001; 74(6):843-52. PubMed ID: 11731975
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contributions of pterin and carotenoid pigments to dewlap coloration in two anole species.
    Steffen JE; McGraw KJ
    Comp Biochem Physiol B Biochem Mol Biol; 2007 Jan; 146(1):42-6. PubMed ID: 17056290
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.