These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
318 related articles for article (PubMed ID: 15792667)
1. Potential assessment of the "support vector machine" method in forecasting ambient air pollutant trends. Lu WZ; Wang WJ Chemosphere; 2005 Apr; 59(5):693-701. PubMed ID: 15792667 [TBL] [Abstract][Full Text] [Related]
2. Potential assessment of a neural network model with PCA/RBF approach for forecasting pollutant trends in Mong Kok urban air, Hong Kong. Lu WZ; Wang WJ; Wang XK; Yan SH; Lam JC Environ Res; 2004 Sep; 96(1):79-87. PubMed ID: 15261787 [TBL] [Abstract][Full Text] [Related]
3. Prediction of maximum daily ozone level using combined neural network and statistical characteristics. Wang W; Lu W; Wang X; Leung AY Environ Int; 2003 Aug; 29(5):555-62. PubMed ID: 12742398 [TBL] [Abstract][Full Text] [Related]
4. Seasonal variation of air pollution index: Hong Kong case study. Wang XK; Lu WZ Chemosphere; 2006 May; 63(8):1261-72. PubMed ID: 16325232 [TBL] [Abstract][Full Text] [Related]
5. Using improved neural network model to analyze RSP, NOx and NO2 levels in urban air in Mong Kok, Hong Kong. Lu WZ; Wang WJ; Wang XK; Xu ZB; Leung AY Environ Monit Assess; 2003 Sep; 87(3):235-54. PubMed ID: 12952354 [TBL] [Abstract][Full Text] [Related]
6. Support vector machine regression (LS-SVM)--an alternative to artificial neural networks (ANNs) for the analysis of quantum chemistry data? Balabin RM; Lomakina EI Phys Chem Chem Phys; 2011 Jun; 13(24):11710-8. PubMed ID: 21594265 [TBL] [Abstract][Full Text] [Related]
7. A method to estimate emission rates from industrial stacks based on neural networks. Olcese LE; Toselli BM Chemosphere; 2004 Nov; 57(7):691-6. PubMed ID: 15488932 [TBL] [Abstract][Full Text] [Related]
8. Interval estimation of urban ozone level and selection of influential factors by employing automatic relevance determination model. Wang D; Lu WZ Chemosphere; 2006 Mar; 62(10):1600-11. PubMed ID: 16084571 [TBL] [Abstract][Full Text] [Related]
9. Fuzzy neural identification and forecasting techniques to process experimental urban air pollution data. Morabito FC; Versaci M Neural Netw; 2003; 16(3-4):493-506. PubMed ID: 12672443 [TBL] [Abstract][Full Text] [Related]
10. Ground-level ozone prediction by support vector machine approach with a cost-sensitive classification scheme. Lu WZ; Wang D Sci Total Environ; 2008 Jun; 395(2-3):109-16. PubMed ID: 18329697 [TBL] [Abstract][Full Text] [Related]
11. The contribution of activity-based transport models to air quality modelling: a validation of the ALBATROSS-AURORA model chain. Beckx C; Int Panis L; Van De Vel K; Arentze T; Lefebvre W; Janssens D; Wets G Sci Total Environ; 2009 Jun; 407(12):3814-22. PubMed ID: 19344931 [TBL] [Abstract][Full Text] [Related]
12. Quantitative analysis of routine chemical constituents in tobacco by near-infrared spectroscopy and support vector machine. Zhang Y; Cong Q; Xie Y; JingxiuYang ; Zhao B Spectrochim Acta A Mol Biomol Spectrosc; 2008 Dec; 71(4):1408-13. PubMed ID: 18538628 [TBL] [Abstract][Full Text] [Related]
13. Predicting motor vehicle crashes using Support Vector Machine models. Li X; Lord D; Zhang Y; Xie Y Accid Anal Prev; 2008 Jul; 40(4):1611-8. PubMed ID: 18606297 [TBL] [Abstract][Full Text] [Related]
14. Adaptive neuro-fuzzy based modelling for prediction of air pollution daily levels in city of Zonguldak. Yildirim Y; Bayramoglu M Chemosphere; 2006 Jun; 63(9):1575-82. PubMed ID: 16310825 [TBL] [Abstract][Full Text] [Related]
15. [Analysis of infrared spectroscopy of ginsengs by support vector machine and wavelet transform]. Jin XJ; Zhang Y; Xie YF; Cong Q; Zhao B Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Mar; 29(3):656-60. PubMed ID: 19455793 [TBL] [Abstract][Full Text] [Related]
16. Comparison of support vector machine and artificial neural network systems for drug/nondrug classification. Byvatov E; Fechner U; Sadowski J; Schneider G J Chem Inf Comput Sci; 2003; 43(6):1882-9. PubMed ID: 14632437 [TBL] [Abstract][Full Text] [Related]
17. Forecasting of ozone episode days by cost-sensitive neural network methods. Tsai CH; Chang LC; Chiang HC Sci Total Environ; 2009 Mar; 407(6):2124-35. PubMed ID: 19157520 [TBL] [Abstract][Full Text] [Related]
18. A novel hybrid forecasting model for PM₁₀ and SO₂ daily concentrations. Wang P; Liu Y; Qin Z; Zhang G Sci Total Environ; 2015 Feb; 505():1202-12. PubMed ID: 25461118 [TBL] [Abstract][Full Text] [Related]
19. Artificial neural networks applied to forecasting time series. Montaño Moreno JJ; Palmer Pol A; Muñoz Gracia P Psicothema; 2011 Apr; 23(2):322-9. PubMed ID: 21504688 [TBL] [Abstract][Full Text] [Related]
20. A distance-decay variable selection strategy for land use regression modeling of ambient air pollution exposures. Su JG; Jerrett M; Beckerman B Sci Total Environ; 2009 Jun; 407(12):3890-8. PubMed ID: 19304313 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]