BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 15793002)

  • 21. The F-actin cortex in chromaffin granule dynamics and fusion: a minireview.
    Villanueva J; Torregrosa-Hetland CJ; García-Martínez V; del Mar Francés M; Viniegra S; Gutiérrez LM
    J Mol Neurosci; 2012 Oct; 48(2):323-7. PubMed ID: 22350991
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High-speed imaging reveals the bimodal nature of dense core vesicle exocytosis.
    Zhang P; Rumschitzki D; Edwards RH
    Proc Natl Acad Sci U S A; 2023 Jan; 120(1):e2214897120. PubMed ID: 36574702
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Munc18-1 promotes large dense-core vesicle docking.
    Voets T; Toonen RF; Brian EC; de Wit H; Moser T; Rettig J; Südhof TC; Neher E; Verhage M
    Neuron; 2001 Aug; 31(4):581-91. PubMed ID: 11545717
    [TBL] [Abstract][Full Text] [Related]  

  • 24. DSCR1/RCAN1 regulates vesicle exocytosis and fusion pore kinetics: implications for Down syndrome and Alzheimer's disease.
    Keating DJ; Dubach D; Zanin MP; Yu Y; Martin K; Zhao YF; Chen C; Porta S; Arbonés ML; Mittaz L; Pritchard MA
    Hum Mol Genet; 2008 Apr; 17(7):1020-30. PubMed ID: 18180251
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Full-fusion and kiss-and-run in chromaffin cells controlled by irreversible vesicle size-dependent fusion pore transitions.
    Chang CW; Hsiao YT; Scheuer KS; Jackson MB
    Cell Calcium; 2022 Jul; 105():102606. PubMed ID: 35636152
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Munc18-1 phosphorylation by protein kinase C potentiates vesicle pool replenishment in bovine chromaffin cells.
    Nili U; de Wit H; Gulyas-Kovacs A; Toonen RF; Sørensen JB; Verhage M; Ashery U
    Neuroscience; 2006 Dec; 143(2):487-500. PubMed ID: 16997485
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ca(2+)-dependent activator protein for secretion is critical for the fusion of dense-core vesicles with the membrane in calf adrenal chromaffin cells.
    Elhamdani A; Martin TF; Kowalchyk JA; Artalejo CR
    J Neurosci; 1999 Sep; 19(17):7375-83. PubMed ID: 10460244
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Oligophrenin-1 Connects Exocytotic Fusion to Compensatory Endocytosis in Neuroendocrine Cells.
    Houy S; Estay-Ahumada C; Croisé P; Calco V; Haeberlé AM; Bailly Y; Billuart P; Vitale N; Bader MF; Ory S; Gasman S
    J Neurosci; 2015 Aug; 35(31):11045-55. PubMed ID: 26245966
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Phosphoprotein Synapsin Ia Regulates the Kinetics of Dense-Core Vesicle Release.
    Yang HJ; Chen PC; Huang CT; Cheng TL; Hsu SP; Chen CY; Lu JC; Wang CT
    J Neurosci; 2021 Mar; 41(13):2828-2841. PubMed ID: 33632727
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Small molecules demonstrate the role of dynamin as a bi-directional regulator of the exocytosis fusion pore and vesicle release.
    Jackson J; Papadopulos A; Meunier FA; McCluskey A; Robinson PJ; Keating DJ
    Mol Psychiatry; 2015 Jul; 20(7):810-9. PubMed ID: 25939402
    [TBL] [Abstract][Full Text] [Related]  

  • 31. PIKfyve negatively regulates exocytosis in neurosecretory cells.
    Osborne SL; Wen PJ; Boucheron C; Nguyen HN; Hayakawa M; Kaizawa H; Parker PJ; Vitale N; Meunier FA
    J Biol Chem; 2008 Feb; 283(5):2804-13. PubMed ID: 18039667
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The crucial role of chromogranins in storage and exocytosis revealed using chromaffin cells from chromogranin A null mouse.
    Montesinos MS; Machado JD; Camacho M; Diaz J; Morales YG; Alvarez de la Rosa D; Carmona E; Castañeyra A; Viveros OH; O'Connor DT; Mahata SK; Borges R
    J Neurosci; 2008 Mar; 28(13):3350-8. PubMed ID: 18367602
    [TBL] [Abstract][Full Text] [Related]  

  • 33. CAPS facilitates filling of the rapidly releasable pool of large dense-core vesicles.
    Liu Y; Schirra C; Stevens DR; Matti U; Speidel D; Hof D; Bruns D; Brose N; Rettig J
    J Neurosci; 2008 May; 28(21):5594-601. PubMed ID: 18495893
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Possible involvement of phosphatidylinositol 3-kinase in regulated exocytosis: studies in chromaffin cells with inhibitor LY294002.
    Chasserot-Golaz S; Hubert P; Thiersé D; Dirrig S; Vlahos CJ; Aunis D; Bader MF
    J Neurochem; 1998 Jun; 70(6):2347-56. PubMed ID: 9603199
    [TBL] [Abstract][Full Text] [Related]  

  • 35. SV2 modulates the size of the readily releasable pool of secretory vesicles.
    Xu T; Bajjalieh SM
    Nat Cell Biol; 2001 Aug; 3(8):691-8. PubMed ID: 11483953
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Interplay between membrane dynamics, diffusion and swelling pressure governs individual vesicular exocytotic events during release of adrenaline by chromaffin cells.
    Amatore C; Bouret Y; Travis ER; Wightman RM
    Biochimie; 2000 May; 82(5):481-96. PubMed ID: 10865134
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Physiological stimulation regulates the exocytic mode through calcium activation of protein kinase C in mouse chromaffin cells.
    Fulop T; Smith C
    Biochem J; 2006 Oct; 399(1):111-9. PubMed ID: 16784416
    [TBL] [Abstract][Full Text] [Related]  

  • 38. v-SNAREs control exocytosis of vesicles from priming to fusion.
    Borisovska M; Zhao Y; Tsytsyura Y; Glyvuk N; Takamori S; Matti U; Rettig J; Südhof T; Bruns D
    EMBO J; 2005 Jun; 24(12):2114-26. PubMed ID: 15920476
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sphingolipids modulate docking, Ca
    Abbineni PS; Coorssen JR
    Int J Biochem Cell Biol; 2018 Nov; 104():43-54. PubMed ID: 30195064
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification of a Munc13-sensitive step in chromaffin cell large dense-core vesicle exocytosis.
    Man KN; Imig C; Walter AM; Pinheiro PS; Stevens DR; Rettig J; Sørensen JB; Cooper BH; Brose N; Wojcik SM
    Elife; 2015 Nov; 4():. PubMed ID: 26575293
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.