These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

344 related articles for article (PubMed ID: 15793103)

  • 1. Reduced azole susceptibility in genotype 3 Candida dubliniensis isolates associated with increased CdCDR1 and CdCDR2 expression.
    Pinjon E; Jackson CJ; Kelly SL; Sanglard D; Moran G; Coleman DC; Sullivan DJ
    Antimicrob Agents Chemother; 2005 Apr; 49(4):1312-8. PubMed ID: 15793103
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Candida dubliniensis CdCDR1 gene is not essential for fluconazole resistance.
    Moran G; Sullivan D; Morschhäuser J; Coleman D
    Antimicrob Agents Chemother; 2002 Sep; 46(9):2829-41. PubMed ID: 12183235
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification and expression of multidrug transporters responsible for fluconazole resistance in Candida dubliniensis.
    Moran GP; Sanglard D; Donnelly SM; Shanley DB; Sullivan DJ; Coleman DC
    Antimicrob Agents Chemother; 1998 Jul; 42(7):1819-30. PubMed ID: 9661028
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanisms of resistance to azole antifungal agents in Candida albicans isolates from AIDS patients involve specific multidrug transporters.
    Sanglard D; Kuchler K; Ischer F; Pagani JL; Monod M; Bille J
    Antimicrob Agents Chemother; 1995 Nov; 39(11):2378-86. PubMed ID: 8585712
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular mechanisms of fluconazole resistance in Candida dubliniensis isolates from human immunodeficiency virus-infected patients with oropharyngeal candidiasis.
    Perea S; López-Ribot JL; Wickes BL; Kirkpatrick WR; Dib OP; Bachmann SP; Keller SM; Martinez M; Patterson TF
    Antimicrob Agents Chemother; 2002 Jun; 46(6):1695-703. PubMed ID: 12019078
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activity of Isavuconazole and Other Azoles against Candida Clinical Isolates and Yeast Model Systems with Known Azole Resistance Mechanisms.
    Sanglard D; Coste AT
    Antimicrob Agents Chemother; 2016 Jan; 60(1):229-38. PubMed ID: 26482310
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The ATP binding cassette transporter gene CgCDR1 from Candida glabrata is involved in the resistance of clinical isolates to azole antifungal agents.
    Sanglard D; Ischer F; Calabrese D; Majcherczyk PA; Bille J
    Antimicrob Agents Chemother; 1999 Nov; 43(11):2753-65. PubMed ID: 10543759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms of azole resistance in clinical isolates of Candida glabrata collected during a hospital survey of antifungal resistance.
    Sanguinetti M; Posteraro B; Fiori B; Ranno S; Torelli R; Fadda G
    Antimicrob Agents Chemother; 2005 Feb; 49(2):668-79. PubMed ID: 15673750
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Missense mutation in CgPDR1 regulator associated with azole-resistant Candida glabrata recovered from Thai oral candidiasis patients.
    Tantivitayakul P; Lapirattanakul J; Kaypetch R; Muadcheingka T
    J Glob Antimicrob Resist; 2019 Jun; 17():221-226. PubMed ID: 30658200
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid acquisition of stable azole resistance by Candida glabrata isolates obtained before the clinical introduction of fluconazole.
    Borst A; Raimer MT; Warnock DW; Morrison CJ; Arthington-Skaggs BA
    Antimicrob Agents Chemother; 2005 Feb; 49(2):783-7. PubMed ID: 15673768
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Replacement of Candida albicans with C. dubliniensis in human immunodeficiency virus-infected patients with oropharyngeal candidiasis treated with fluconazole.
    Martinez M; López-Ribot JL; Kirkpatrick WR; Coco BJ; Bachmann SP; Patterson TF
    J Clin Microbiol; 2002 Sep; 40(9):3135-9. PubMed ID: 12202543
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular mechanisms associated with Fluconazole resistance in clinical Candida albicans isolates from India.
    Mane A; Vidhate P; Kusro C; Waman V; Saxena V; Kulkarni-Kale U; Risbud A
    Mycoses; 2016 Feb; 59(2):93-100. PubMed ID: 26648048
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Azole susceptibility and resistance in Candida dubliniensis.
    Pinjon E; Moran GP; Coleman DC; Sullivan DJ
    Biochem Soc Trans; 2005 Nov; 33(Pt 5):1210-4. PubMed ID: 16246083
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antifungal drug susceptibilities of oral Candida dubliniensis isolates from human immunodeficiency virus (HIV)-infected and non-HIV-infected subjects and generation of stable fluconazole-resistant derivatives in vitro.
    Moran GP; Sullivan DJ; Henman MC; McCreary CE; Harrington BJ; Shanley DB; Coleman DC
    Antimicrob Agents Chemother; 1997 Mar; 41(3):617-23. PubMed ID: 9056003
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multidrug Transporters and Alterations in Sterol Biosynthesis Contribute to Azole Antifungal Resistance in Candida parapsilosis.
    Berkow EL; Manigaba K; Parker JE; Barker KS; Kelly SL; Rogers PD
    Antimicrob Agents Chemother; 2015 Oct; 59(10):5942-50. PubMed ID: 26169412
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of Candida dubliniensis in oropharyngeal samples from human immunodeficiency virus-infected patients in North America by primary CHROMagar candida screening and susceptibility testing of isolates.
    Kirkpatrick WR; Revankar SG; Mcatee RK; Lopez-Ribot JL; Fothergill AW; McCarthy DI; Sanche SE; Cantu RA; Rinaldi MG; Patterson TF
    J Clin Microbiol; 1998 Oct; 36(10):3007-12. PubMed ID: 9738058
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antifungal drug resistance in pathogenic fungi.
    Vanden Bossche H; Dromer F; Improvisi I; Lozano-Chiu M; Rex JH; Sanglard D
    Med Mycol; 1998; 36 Suppl 1():119-28. PubMed ID: 9988500
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Emergence of azole drug resistance in Candida species from HIV-infected patients receiving prolonged fluconazole therapy for oral candidosis.
    Johnson EM; Warnock DW; Luker J; Porter SR; Scully C
    J Antimicrob Chemother; 1995 Jan; 35(1):103-14. PubMed ID: 7768758
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Persistent Candida albicans colonization and molecular mechanisms of azole resistance in autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) patients.
    Siikala E; Rautemaa R; Richardson M; Saxen H; Bowyer P; Sanglard D
    J Antimicrob Chemother; 2010 Dec; 65(12):2505-13. PubMed ID: 20876623
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unmasking of CgYor1-Dependent Azole Resistance Mediated by Target of Rapamycin (TOR) and Calcineurin Signaling in Candida glabrata.
    Kumari S; Kumar M; Esquivel BD; Wasi M; Pandey AK; Kumar Khandelwal N; Mondal AK; White TC; Prasad R; Gaur NA
    mBio; 2022 Feb; 13(1):e0354521. PubMed ID: 35038899
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.