BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 15793558)

  • 1. Simulation of the toxicokinetics of trichloroethylene, methylene chloride, styrene and n-hexane by a toxicokinetics/toxicodynamics model using experimental data.
    Nakayama Y; Kishida F; Nakatsuka I; Matsuo M
    Environ Sci; 2005; 12(1):21-32. PubMed ID: 15793558
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adjusting exposure limits for long and short exposure periods using a physiological pharmacokinetic model.
    Andersen ME; MacNaughton MG; Clewell HJ; Paustenbach DJ
    Am Ind Hyg Assoc J; 1987 Apr; 48(4):335-43. PubMed ID: 3591649
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of the potential impact of benchmark dose and pharmacokinetic modeling in noncancer risk assessment.
    Clewell HJ; Gentry PR; Gearhart JM
    J Toxicol Environ Health; 1997 Dec; 52(6):475-515. PubMed ID: 9397182
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gastrointestinal absorption of xenobiotics in physiologically based pharmacokinetic models. A two-compartment description.
    Staats DA; Fisher JW; Connolly RB
    Drug Metab Dispos; 1991; 19(1):144-8. PubMed ID: 1673388
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A physiologically based pharmacokinetic (PB/PK) model for multiple exposure routes of soman in multiple species.
    Sweeney RE; Langenberg JP; Maxwell DM
    Arch Toxicol; 2006 Nov; 80(11):719-31. PubMed ID: 16718492
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PBPK models in risk assessment--A focus on chloroprene.
    DeWoskin RS
    Chem Biol Interact; 2007 Mar; 166(1-3):352-9. PubMed ID: 17324392
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combining physiologically based pharmacokinetic modeling with Monte Carlo simulation to derive an acute inhalation guidance value for trichloroethylene.
    Simon TW
    Regul Toxicol Pharmacol; 1997 Dec; 26(3):257-70. PubMed ID: 9441916
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a screening approach to interpret human biomonitoring data on volatile organic compounds: reverse dosimetry on biomonitoring data for trichloroethylene.
    Liao KH; Tan YM; Clewell HJ
    Risk Anal; 2007 Oct; 27(5):1223-36. PubMed ID: 18076492
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessing the relevance of rodent data on chemical interactions for health risk assessment purposes: a case study with dichloromethane-toluene mixture.
    Pelekis M; Krishnan K
    Regul Toxicol Pharmacol; 1997 Feb; 25(1):79-86. PubMed ID: 9056503
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of semi-generic PBTK modeling for emergency risk assessment after acute inhalation exposure to volatile hazardous chemicals.
    Olie JD; Bessems JG; Clewell HJ; Meulenbelt J; Hunault CC
    Chemosphere; 2015 Aug; 132():47-55. PubMed ID: 25794648
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterizing uncertainty and population variability in the toxicokinetics of trichloroethylene and metabolites in mice, rats, and humans using an updated database, physiologically based pharmacokinetic (PBPK) model, and Bayesian approach.
    Chiu WA; Okino MS; Evans MV
    Toxicol Appl Pharmacol; 2009 Nov; 241(1):36-60. PubMed ID: 19660485
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physiologically based pharmacokinetic models for the transport of trichloroethylene in adipose tissue.
    Albanese RA; Banks HT; Evans MV; Potter LK
    Bull Math Biol; 2002 Jan; 64(1):97-131. PubMed ID: 11868339
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toxicokinetics and physiologically based toxicokinetics in toxicology and risk assessment.
    Dixit R; Riviere J; Krishnan K; Andersen ME
    J Toxicol Environ Health B Crit Rev; 2003; 6(1):1-40. PubMed ID: 12587252
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Validation of a physiological modeling framework for simulating the toxicokinetics of chemicals in mixtures.
    Haddad S; Charest-Tardif G; Tardif R; Krishnan K
    Toxicol Appl Pharmacol; 2000 Sep; 167(3):199-209. PubMed ID: 10986011
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spreadsheet programming--a new approach in physiologically based modeling of solvent toxicokinetics.
    Johanson G; Näslund PH
    Toxicol Lett; 1988 May; 41(2):115-27. PubMed ID: 3368926
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physiologically-based toxicokinetic modeling of durene (1,2,3,5-tetramethylbenzene) and isodurene (1,2,4,5-tetramethylbenzene) in humans.
    Jałowiecki P; Janasik B
    Int J Occup Med Environ Health; 2007; 20(2):155-65. PubMed ID: 17638682
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physiologically based modeling of the maximal effect of metabolic interactions on the kinetics of components of complex chemical mixtures.
    Haddad S; Charest-Tardif G; Krishnan K
    J Toxicol Environ Health A; 2000 Oct; 61(3):209-23. PubMed ID: 11036509
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An integrated QSAR-PBPK modelling approach for predicting the inhalation toxicokinetics of mixtures of volatile organic chemicals in the rat.
    Price K; Krishnan K
    SAR QSAR Environ Res; 2011 Mar; 22(1-2):107-28. PubMed ID: 21391144
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A physiologically based pharmacokinetic model for arsenic exposure. I. Development in hamsters and rabbits.
    Mann S; Droz PO; Vahter M
    Toxicol Appl Pharmacol; 1996 Mar; 137(1):8-22. PubMed ID: 8607145
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physiologically based pharmacokinetic model development and simulations for ethylene dichloride (1,2-dichloroethane) in rats.
    Sweeney LM; Saghir SA; Gargas ML
    Regul Toxicol Pharmacol; 2008 Aug; 51(3):311-23. PubMed ID: 18579268
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.