These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

478 related articles for article (PubMed ID: 15793578)

  • 81. Artificial proprioceptive feedback for myoelectric control.
    Pistohl T; Joshi D; Ganesh G; Jackson A; Nazarpour K
    IEEE Trans Neural Syst Rehabil Eng; 2015 May; 23(3):498-507. PubMed ID: 25216484
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Did I do that? Detecting a perturbation to visual feedback in a reaching task.
    Gaffin-Cahn E; Hudson TE; Landy MS
    J Vis; 2019 Jan; 19(1):5. PubMed ID: 30640373
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Evidence for stronger visuo-motor than visuo-proprioceptive conflict during mirror drawing performed by a deafferented subject and control subjects.
    Miall RC; Cole J
    Exp Brain Res; 2007 Jan; 176(3):432-9. PubMed ID: 16874511
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Movement related activity in the μ band of the human EEG during a robot-based proprioceptive task.
    Marini F; Zenzeri J; Pippo V; Morasso P; Campus C
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():1019-1024. PubMed ID: 31374763
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Seeing Your Foot Move Changes Muscle Proprioceptive Feedback.
    Ackerley R; Chancel M; Aimonetti JM; Ribot-Ciscar E; Kavounoudias A
    eNeuro; 2019; 6(2):. PubMed ID: 30923738
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Long-term retention of proprioceptive recalibration.
    Maksimovic S; Cressman EK
    Neuropsychologia; 2018 Jun; 114():65-76. PubMed ID: 29654883
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Two-component models of reaching: evidence from deafferentation in a Fitts' law task.
    Medina J; Jax SA; Coslett HB
    Neurosci Lett; 2009 Feb; 451(3):222-6. PubMed ID: 19150390
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Timing of bimanual movements and deafferentation: implications for the role of sensory movement effects.
    Drewing K; Stenneken P; Cole J; Prinz W; Aschersleben G
    Exp Brain Res; 2004 Sep; 158(1):50-7. PubMed ID: 15007586
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Proprioceptive body illusions modulate the visual perception of reaching distance.
    Petroni A; Carbajal MJ; Sigman M
    PLoS One; 2015; 10(6):e0131087. PubMed ID: 26110274
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Flexibility and individual differences in visuo-proprioceptive integration: evidence from the analysis of a morphokinetic control task.
    Boulinguez P; Rouhana J
    Exp Brain Res; 2008 Feb; 185(1):137-49. PubMed ID: 17922118
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Visuo-proprioceptive integration and recalibration with multiple visual stimuli.
    Debats NB; Heuer H; Kayser C
    Sci Rep; 2021 Nov; 11(1):21640. PubMed ID: 34737371
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Intra- and intermodal integration of discrepant visual and proprioceptive action effects.
    Ladwig S; Sutter C; Müsseler J
    Exp Brain Res; 2013 Dec; 231(4):457-68. PubMed ID: 24101198
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Visuo-Proprioceptive Control of the Hand in Older Adults.
    Block HJ; Sexton BM
    Multisens Res; 2020 Jul; 34(1):93-111. PubMed ID: 33706277
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Understanding implicit sensorimotor adaptation as a process of proprioceptive re-alignment.
    Tsay JS; Kim H; Haith AM; Ivry RB
    Elife; 2022 Aug; 11():. PubMed ID: 35969491
    [TBL] [Abstract][Full Text] [Related]  

  • 95. The roles of vision and proprioception in the planning of reaching movements.
    Sarlegna FR; Sainburg RL
    Adv Exp Med Biol; 2009; 629():317-35. PubMed ID: 19227507
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Upper limb asymmetries in the utilization of proprioceptive feedback.
    Goble DJ; Lewis CA; Brown SH
    Exp Brain Res; 2006 Jan; 168(1-2):307-11. PubMed ID: 16311728
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Electroencephalographic reactivity to unimodal and bimodal visual and proprioceptive demands in sensorimotor integration.
    Mizelle JC; Forrester L; Hallett M; Wheaton LA
    Exp Brain Res; 2010 Jun; 203(4):659-70. PubMed ID: 20445965
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Isolating Visual and Proprioceptive Components of Motor Sequence Learning in ASD.
    Sharer EA; Mostofsky SH; Pascual-Leone A; Oberman LM
    Autism Res; 2016 May; 9(5):563-9. PubMed ID: 26442448
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Vision-to-event and movement-to-event coordination in an unimanual circling task.
    Dietrich S; Prinz W; Rieger M
    Exp Brain Res; 2012 Apr; 218(2):237-46. PubMed ID: 22278108
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Impairments of reaching movements in patients without proprioception. I. Spatial errors.
    Gordon J; Ghilardi MF; Ghez C
    J Neurophysiol; 1995 Jan; 73(1):347-60. PubMed ID: 7714577
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.